Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 026801    DOI: 10.1088/1674-1056/ab6583
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Triphenylene adsorption on Cu(111) and relevant graphene self-assembly

Qiao-Yue Chen(陈乔悦)1, Jun-Jie Song(宋俊杰)3, Liwei Jing(井立威)1, Kaikai Huang(黄凯凯)1, Pimo He(何丕模)1,2, Hanjie Zhang(张寒洁)1
1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China;
3 Department of Fundamental and Social Science, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
Abstract  Investigations on adsorption behavior of triphenylene (TP) and subsequent graphene self-assembly on Cu(111) were carried out mainly by using scanning tunneling microscopy (STM). At monolayer coverage, TP molecules formed a long-range ordered adsorption structure on Cu(111) with an uniform orientation. Graphene self-assembly on the Cu(111) substrate with TP molecules as precursor was achieved by annealing the sample, and a large-scale graphene overlayer was successfully captured after the sample annealing up to 1000 K. Three different Moiré patterns generated from relative rotational disorders between the graphene overlayer and the Cu(111) substrate were observed, one with 4° rotation between the graphene overlayer and the Cu(111) substrate with a periodicity of 2.93 nm, another with 7° rotation and 2.15 nm of the size of the Moiré supercell, and the third with 10° rotation with a periodicity of 1.35 nm.
Keywords:  triphenylene      graphene      Cu(111)      scanning tunneling microscopy  
Received:  04 November 2019      Revised:  16 December 2019      Accepted manuscript online: 
PACS:  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0503100) and the National Natural Science Foundation of China (Grant No. 11790313).
Corresponding Authors:  Pimo He, Hanjie Zhang     E-mail:  zhj_fox@zju.edu.cn;phypmhe@zju.edu.cn

Cite this article: 

Qiao-Yue Chen(陈乔悦), Jun-Jie Song(宋俊杰), Liwei Jing(井立威), Kaikai Huang(黄凯凯), Pimo He(何丕模), Hanjie Zhang(张寒洁) Triphenylene adsorption on Cu(111) and relevant graphene self-assembly 2020 Chin. Phys. B 29 026801

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K and Novoselov K S 2008 Nano Lett. 8 1704
[3] Forbeaux I, Themlin J M and Debever J M 1998 Phys. Rev. 58 16396
[4] Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[5] Zhang X B, Qing F Z and Li X S 2019 Acta Phys. Sin. 68 96801 (in Chinese)
[6] Li J, Gottardi S, Solianyk L, Moreno-López J C and Stöhr M 2016 J. Phys. Chem. C 120 18093
[7] Song J J, Zhang Y X, Zhang H J, Cai Y L, Bao S N and He P M 2016 Appl. Surf. Sci. 367 424
[8] Song J J, Zhang H J, Cai Y L, Zhang Y X, Bao S N and He P M 2015 Nanotechnology 27 055602
[9] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K and Fasel R 2010 Nature 466 470
[10] Lu J, Yeo P S E, Gan C K, Wu P and Loh K P 2011 Nat. Nanotechnol. 6 247
[11] Zhu R J, Huang Y H, Li J Y, Kang N and Xu H Q 2019 Chin. Phys. B 28 67201
[12] Fang W, Hsu A L, Song Y and Kong J 2015 Nanoscale 7 20335
[13] Suzuki N, Wang Y, Elvati P, Qu Z B, Kim K, Jiang S, Baumeister E, Lee J, Yeom B, Bahng J H, Lee J, Violi A, Kotov N A, Michigan U and Ann Arbor M I 2016 ACS Nano 10 1744
[14] Zhou Z, Gao F and Goodman D W 2010 Surf. Sci. 604 L31
[15] Didar B R, Khosravian H, Balbuena P B, et al. 2018 RSC Adv. 8 27825
[16] Niu T C, Zhou M, Zhang J L, Feng Y P and Chen W 2013 J. Am. Chem. Soc. 135 8409
[17] Batzill M 2012 Surf. Sci. Rep. 67 83
[18] Xu Z and Buehler M J 2010 J. Phys.: Condens. Matter 22 485301
[19] Soy E, Liang Z and Trenary M 2015 J. Phys. Chem. C 119 24796
[20] Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
[21] Nguyen V L, Shin B G, Duong D L, Kim S T, Perello D, Lim Y J, Yuan Q H, Ding F, Jeong H Y, Shin H S, Lee S M, Chae S H, Vu Q A, Lee S H and Lee Y H 2015 Adv. Mater. 27 1376
[22] Chen X, Liu S Y, Liu L C, Liu X Q, Liu X M and Wang L 2012 Appl. Phys. Lett. 100 163106
[23] Süle P, Szendrő M, Hwang C and Tapasztó L 2014 Carbon 77 1082
[24] Lu B, Zhang H J, Li H Y, Bao S N, He P and Hao T L 2003 Phys. Rev. B 68 125410
[25] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[26] Tonigold K and Groß A 2010 J. Chem. Phys. 132 224701
[27] Yan S C, Xie N, Gong H Q, Sun Q, Guo Y, Shan X Y and Lu X H 2012 Chin. Phys. Lett. 29 46803
[28] Ge S P, Lu C and Zhao R G 2006 Chin. Phys. Lett. 23 1558
[29] Qi J, Gao Y X, Huang L, Lin X, Dong J J, Du S X and Gao H J 2019 Chin. Phys. B 28 66801
[30] Song Z P, Bao L, Cao Y, Qi J, Peng H, Wang Q, Huang L, Lu H L, Lin X, Wang Y L, Du S X and Gao J H 2019 Chin. Phys. B 28 56801
[31] Zint S R, Ebeling D, Ahles S, Wegner H A and Schirmeisen A 2016 J. Phys. Chem. C 120 1615
[32] Xu Q M, Han M J, Wan L J, Wang C, Bai C L, Dai B and Yang J L 2003 Chem. Commun. 9 2874
[33] Krüger P, Petukhov M, Domenichini B, Berkó A and Bourgeois S 2012 J. Phys. Chem. C 116 10617
[34] Bilić A, Reimers J R, Hush N S, Hoft R C and Ford M J 2006 J. Chem. Theory Comput. 2 1093
[35] Liu W, Ruiz V G, Zhang G X, Santra B, Ren X, Scheffler M and Tkatchenko A 2013 New J. Phys. 15 53046
[36] Talirz L, Ruffieux P and Fasel R 2016 Adv. Mater. 28 6222
[37] Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R and Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060
[38] Wan X, Chen K, Liu D Q, Chen J, Miao Q and Xu J B 2012 Chem. Mater. 24 3906
[39] Chen K, Wan X, Liu D Q, Kang Z W, Xie W G, Chen J, Miao Q and Xu J B 2013 Nanoscale 5 5784
[40] Cho J, Gao L, Tian J F, Cao H L, Wu W, Yu Q K, Yitamben E N, Fisher B, Guest J R, Chen Y P and Guisinger N P 2011 ACS Nano 5 3607
[41] N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033
[42] Zhao M W, Xia Y Y, Ma Y C, Ying M J, Liu X D and Mei L M 2002 Chin. Phys. Lett. 19 1498
[43] Sidorenkov A V, Kolesnikov S V and Saletsky A M 2016 Eur. Phys. J. B 89 1
[44] He R, Zhao L Y, Petrone N, Kim K S, Roth M, Hone J, Kim P, Pasupathy A and Pinczuk A 2012 Nano Lett. 12 2408
[45] Hattab H, N'Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J and Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903
[46] Murata Y, Petrova V, Kappes B B, Ebnonnasir A, Petrov I, Xie Y H, Ciobanu C V and Kodambaka S 2010 ACS Nano 4 6509
[47] Busse C, Lazić P, Djemour R, Coraux J, Gerber T, Atodiresei N, Caciuc V, Brako R, N'Diaye A T, Blügel S, Zegenhagen J and Michely T 2011 Phys. Rev. Lett. 107 036101
[48] Xu W Y, Zhang L Z, Huang L, Que Y D, Wang Y L, Lin X and Du S X 2019 Chin. Phys. B 28 46801
[1] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[2] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[3] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[7] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[8] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[9] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[10] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[11] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[12] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[13] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[14] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[15] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
No Suggested Reading articles found!