Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 106106    DOI: 10.1088/1674-1056/ab3f91
Special Issue: TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery
TOPICAL REVIEW—CALYPSO structure prediction methodology and its applications to materials discovery Prev   Next  

Pressure-induced new chemistry

Jianyan Lin(蔺健妍), Xin Du(杜鑫), Guochun Yang(杨国春)
Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technologyof Ministry of Education, Northeast Normal University, Changchun 130024, China
Abstract  It has long been recognized that the valence electrons of an atom dominate the chemical properties, while the inner-shell electrons or outer empty orbital do not participate in chemical reactions. Pressure, as a fundamental thermodynamic variable, plays an important role in the preparation of new materials. More recently, pressure stabilized a series of unconventional stoichiometric compounds with new oxidation states, in which the inner-shell electrons or outer empty orbital become chemically active. Here, we mainly focus on the recent advances in high-pressure new chemistry including novel chemical bonding and new oxidation state, identified by first-principles swarm intelligence structural search calculations. The aim of this review is to provide an up-to-date research progress on the chemical bonding with inner-shell electrons or outer empty orbital, abnormal interatomic charge transfer, hypervalent compounds, and chemical reactivity of noble gases. Personal outlook on the challenge and opportunity in this field are proposed in the conclusion.
Keywords:  high pressure      oxidation state      stoichiometry      structural prediction  
Received:  10 June 2019      Revised:  18 July 2019      Published:  05 October 2019
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  61.50.Nw (Crystal stoichiometry)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21573037, 21873017, 11704062, and 51732003), the Postdoctoral Science Foundation of China (Grant No. 2013M541283), the Natural Science Foundation of Jilin Province, China (Grant No. 20190201231JC), the "111" Project, China (Grant No. B13013), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2412017QD006).
Corresponding Authors:  Guochun Yang     E-mail:  yanggc468@nenu.edu.cn

Cite this article: 

Jianyan Lin(蔺健妍), Xin Du(杜鑫), Guochun Yang(杨国春) Pressure-induced new chemistry 2019 Chin. Phys. B 28 106106

[35] Miao M, Botana J, Pravica M, Sneed D and Park C 2017 Jpn. J. Appl. Phys. 56 05FA10
[1] Pauling L 1960 The Nature of the Chemical Bond (Ithaca, NY: Cornell University Press)
[36] Miao M S 2013 Nat. Chem. 5 846
[2] Frenking G and Shaik S 2014 The chemical bond: Fundamental aspects of chemical bonding (Wiley-VCH Verlag GmbH & Co. KGaA)
[37] Luo D, Lv J, Peng F, Wang Y, Yang G, Rahm M and Ma Y 2019 Chem. Sci. 10 2543
[3] Crabtree R H 2002 Science 295 288
[38] Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817
[4] Goesten M G, Rahm M, Bickelhaupt F M and Hensen E J M 2017 Angew. Chem. Int. Ed. 56 9772
[39] Broux T, Ubukata H, Pickard C J, Takeiri F, Kobayashi G, Kawaguchi S, Yonemura M, Goto Y, Tassel C and Kageyama H 2019 J. Am. Chem. Soc. 141 8717
[40] Binns J, Donnelly M E, Peña-Alvarez M, Wang M, Gregoryanz E, Hermann A, Dalladay-Simpson P and Howie R T 2019 J. Phys. Chem. Lett. 10 1109
[5] Himmel D, Knapp C, Patzschke M and Riedel S 2010 ChemPhysChem 11 865
[41] Bykov M, Bykova E, Aprilis G, Glazyrin K, Koemets E, Chuvashova I, Kupenko I, McCammon C, Mezouar M, Prakapenka V, Liermann H P, Tasnádi F, Ponomareva A V, Abrikosov I A, Dubrovinskaia N and Dubrovinsky L 2018 Nat. Commun. 9 2756
[6] Wang G, Zhou M, Goettel J T, Schrobilgen G J, Su J, Li J, Schlöder T and Riedel S 2014 Nature 514 475
[42] Walsh J P S, Clarke S M, Puggioni D, Tamerius A D, Meng Y, Rondinelli J M, Jacobsen S D and Freedman D E 2019 Chem. Mater. 31 3083
[7] Karen P, McArdle P and Takats J 2014 Toward a Comprehensive Definition of Oxidation State (IUPAC Technical Report in Pure Appl. Chem.) p. 1017
[43] Pernpointner M and Hashmi A S K 2009 J. Chem. Theory Comput. 5 2717
[8] Riedel S and Kaupp M 2009 Coord. Chem. Rev. 253 606
[44] Pyykkö P 2004 Angew. Chem. Int. Ed. 43 4412
[9] Windorff C J, Chen G P, Cross J N, Evans W J, Furche F, Gaunt A J, Janicke M T, Kozimor S A and Scott B L 2017 J. Am. Chem. Soc. 139 3970
[45] Gorin D J and Toste F D 2007 Nature 446 395
[10] Zhang Q, Hu S, Qu H, Su J, Wang G, Lu J, Chen M, Zhou M and Li J 2016 Angew. Chem. Int. Ed. 55 6896
[46] Bond G C 2002 Catal. Today 72 5
[11] McMillan P F 2006 Chem. Soc. Rev. 35 855
[47] Gimeno M C and Laguna A 2003 Gold. Bull. 36 83
[12] Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[48] Miao M, Brgoch J, Krishnapriyan A, Goldman A, Kurzman J A and Seshadri R 2013 Inorg. Chem. 52 8183
[13] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[49] Wang X, Andrews L, Willmann K, Brosi F and Riedel S 2012 Angew. Chem. Int. Ed. 51 10628
[14] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[50] Himmel D and Riedel S 2007 Inorg. Chem. 46 5338
[15] Zurek E and Bi T 2019 J. Chem. Phys. 150 050901
[51] Koirala P, Willis M, Kiran B, Kandalam A K and Jena P 2010 J. Phys. Chem. C 114 16018
[16] Zhang W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B and Konôpková Z 2013 Science 342 1502
[52] Wu C Y, Horibe T, Jacobsen C B and Toste F D 2015 Nature 517 449
[17] Zhu Q, Jung D Y, Oganov A R, Glass C W, Gatti C and Lyakhov A O 2013 Nat. Chem. 5 61
[53] Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A and Bourissou D 2017 Nat. Commun. 8 565
[18] Zurek E, Hoffmann R, Ashcroft N W, Oganov A R and Lyakhov A O 2009 Proc. Natl. Acad. Sci. USA 106 17640
[54] Huang L, Rudolph M, Rominger F and Hashmi A S K 2016 Angew. Chem. Int. Ed. 55 4808
[19] Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005
[55] Jansen M 2008 Chem. Soc. Rev. 37 1826
[20] Crowhurst J C, Goncharov A F, Sadigh B, Evans C L, Morrall P G, Ferreira J L and Nelson A J 2006 Science 311 1275
[56] Mohr F 2004 Gold. Bull. 37 164
[21] Miao M S and Hoffmann R 2014 Acc. Chem. Res. 47 1311
[57] Lin J, Zhang S, Guan W, Yang G and Ma Y 2018 J. Am. Chem. Soc. 140 9545
[22] Rahm M, Cammi R, Ashcroft N W and Hoffmann R 2019 J. Am. Chem. Soc. 141 10253
[58] Tang M, Zhang Y, Li S, Wu X, Jia Y and Yang G 2018 ChemPhysChem 19 2989
[23] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[59] Yang G, Wang Y, Peng F, Bergara A and Ma Y 2016 J. Am. Chem. Soc. 138 4046
[24] Chris J P and Needs R J 2011 J. Phys.: Condens. Matter 23 053201
[60] Dye James L 2015 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 373 20140174
[25] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[61] Moock K and Seppelt K 1989 Angew. Chem. Int. Ed. Engl. 28 1676
[26] Curtarolo S, Hart G L W, Nardelli M B, Mingo N, Sanvito S and Levy O 2013 Nat. Mater. 12 191
[62] Asprey L B, Margrave J L and Silverthorn M E 1961 J. Am. Chem. Soc. 83 2955
[27] Gao G, Hoffmann R, Ashcroft N W, Liu H, Bergara A and Ma Y 2013 Phys. Rev. B 88 184104
[63] Jehoulet C and Bard A J 1991 Angew. Chem. Int. Ed. Engl. 30 836
[28] Liang X, Bergara A, Wang L, Wen B, Zhao Z, Zhou X F, He J, Gao G and Tian Y 2019 Phys. Rev. B 99 100505
[64] Dye J L, Ceraso J M, Lok M, Barnett B L and Tehan F J 1974 J. Am. Chem. Soc. 96 608
[29] Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712
[30] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[65] Tehan F J, Barnett B L and Dye J L 1974 J. Am. Chem. Soc. 96 7203
[31] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463
[66] Dye J L 1979 Angew. Chem. Int. Ed. Engl. 18 587
[32] Zhu L, Wang H, Wang Y, Lv J, Ma Y, Cui Q, Ma Y and Zou G 2011 Phys. Rev. Lett. 106 145501
[67] Li Z, Yang J, Hou J G and Zhu Q 2004 Chem. Eur. J. 10 1592
[33] Xie Y, Oganov A R and Ma Y 2010 Phys. Rev. Lett. 104 177005
[68] Schwarz U, Takemura K, Hanfl M and Syassen K 1998 Phys. Rev. Lett. 81 2711
[34] Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L, Dronskowski R, Zhou X F, Prakapenka V B, Konôpková Z, Popov I A, Boldyrev A I and Wang H T 2017 Nat. Chem. 9 440
[69] Takemura K, Christensen N E, Novikov D L, Syassen K, Schwarz U and Hanfl M 2000 Phys. Rev. B 61 14399
[35] Miao M, Botana J, Pravica M, Sneed D and Park C 2017 Jpn. J. Appl. Phys. 56 05FA10
[70] Takemura K, Minomura S and Shimomura O 1982 Phys. Rev. Lett. 49 1772
[36] Miao M S 2013 Nat. Chem. 5 846
[71] Shamp A, Hooper J and Zurek E 2012 Inorg. Chem. 51 9333
[37] Luo D, Lv J, Peng F, Wang Y, Yang G, Rahm M and Ma Y 2019 Chem. Sci. 10 2543
[72] Hooper J and Zurek E 2012 Chem. Eur. J. 18 5013
[38] Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817
[73] Desgreniers S, Tse J S, Matsuoka T, Ohishi Y and Tse J J 2015 Sci. Adv. 1 e1500669
[39] Broux T, Ubukata H, Pickard C J, Takeiri F, Kobayashi G, Kawaguchi S, Yonemura M, Goto Y, Tassel C and Kageyama H 2019 J. Am. Chem. Soc. 141 8717
[74] Botana J and Miao M S 2014 Nat. Commun. 5 4861
[40] Binns J, Donnelly M E, Peña-Alvarez M, Wang M, Gregoryanz E, Hermann A, Dalladay-Simpson P and Howie R T 2019 J. Phys. Chem. Lett. 10 1109
[75] Schilling J S 2006 High Press. Res. 26 145
[41] Bykov M, Bykova E, Aprilis G, Glazyrin K, Koemets E, Chuvashova I, Kupenko I, McCammon C, Mezouar M, Prakapenka V, Liermann H P, Tasnádi F, Ponomareva A V, Abrikosov I A, Dubrovinskaia N and Dubrovinsky L 2018 Nat. Commun. 9 2756
[76] Kobrin P H, Rosenberg R A, Becker U, Southworth S, Truesdale C M, Lindle D W, Thornton G, White M G, Poliakoff E D and Shirley D A 1983 J. Phys. B: At. Mol. Phys. 16 4339
[42] Walsh J P S, Clarke S M, Puggioni D, Tamerius A D, Meng Y, Rondinelli J M, Jacobsen S D and Freedman D E 2019 Chem. Mater. 31 3083
[77] Luo D, Wang Y, Yang G and Ma Y 2018 J. Phys. Chem. C 122 12448
[43] Pernpointner M and Hashmi A S K 2009 J. Chem. Theory Comput. 5 2717
[78] Higelin A and Riedel S 2017 19 High Oxidation States in Transition Metal Fluorides in Modern Synthesis Processes (Editors: Groult H, Leroux F R and Tressaud A) Elsevier p. 561
[44] Pyykkö P 2004 Angew. Chem. Int. Ed. 43 4412
[79] Frenking G 2000 Nature 406 836
[45] Gorin D J and Toste F D 2007 Nature 446 395
[80] Seppelt K 2015 Chem. Rev. 115 1296
[46] Bond G C 2002 Catal. Today 72 5
[81] Drews T, Supeł J, Hagenbach A and Seppelt K 2006 Inorg. Chem. 45 3782
[47] Gimeno M C and Laguna A 2003 Gold. Bull. 36 83
[82] Craciun R, Picone D, Long R T, Li S, Dixon D A, Peterson K A and Christe K O 2010 Inorg. Chem. 49 1056
[48] Miao M, Brgoch J, Krishnapriyan A, Goldman A, Kurzman J A and Seshadri R 2013 Inorg. Chem. 52 8183
[83] Botana J, Wang X, Hou C, Yan D, Lin H, Ma Y and Miao M-s 2015 Angew. Chem. Int. Ed. 54 9280
[49] Wang X, Andrews L, Willmann K, Brosi F and Riedel S 2012 Angew. Chem. Int. Ed. 51 10628
[84] Jensen W B 2003 J. Chem. Edu. 80 952
[50] Himmel D and Riedel S 2007 Inorg. Chem. 46 5338
[85] Lin J, Zhao Z, Liu C, Zhang J, Du X, Yang G and Ma Y 2019 J. Am. Chem. Soc. 141 5409
[51] Koirala P, Willis M, Kiran B, Kandalam A K and Jena P 2010 J. Phys. Chem. C 114 16018
[86] Gong Y, Zhou M, Kaupp M and Riedel S 2009 Angew. Chem. Int. Ed. 48 7879
[52] Wu C Y, Horibe T, Jacobsen C B and Toste F D 2015 Nature 517 449
[87] Zhang H, Li Y, Hou J, Tu K and Chen Z 2016 J. Am. Chem. Soc. 138 5644
[53] Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A and Bourissou D 2017 Nat. Commun. 8 565
[88] Yang L M, Ganz E, Chen Z, Wang Z X and Schleyer P v R 2015 Angew. Chem. Int. Ed. 54 9468
[54] Huang L, Rudolph M, Rominger F and Hashmi A S K 2016 Angew. Chem. Int. Ed. 55 4808
[89] Lipke M C and Tilley T D 2014 J. Am. Chem. Soc. 136 16387
[55] Jansen M 2008 Chem. Soc. Rev. 37 1826
[90] Khan A and Foucher D 2016 Coord. Chem. Rev. 312 41
[56] Mohr F 2004 Gold. Bull. 37 164
[57] Lin J, Zhang S, Guan W, Yang G and Ma Y 2018 J. Am. Chem. Soc. 140 9545
[91] Wang Z X and Schleyer P v R 2002 Angew. Chem. Int. Ed. 41 4082
[58] Tang M, Zhang Y, Li S, Wu X, Jia Y and Yang G 2018 ChemPhysChem 19 2989
[92] Sreenithya A, Patel C, Hadad C M and Sunoj R B 2017 ACS Catal. 7 4189
[59] Yang G, Wang Y, Peng F, Bergara A and Ma Y 2016 J. Am. Chem. Soc. 138 4046
[93] Liang H and Ciufolini M A 2011 Angew. Chem. Int. Ed. 50 11849
[60] Dye James L 2015 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 373 20140174
[94] Richardson R D and Wirth T 2006 Angew. Chem. Int. Ed. 45 4402
[61] Moock K and Seppelt K 1989 Angew. Chem. Int. Ed. Engl. 28 1676
[95] Zhdankin V V 2013 Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons
[62] Asprey L B, Margrave J L and Silverthorn M E 1961 J. Am. Chem. Soc. 83 2955
[96] Schilter D 2019 Nat. Rev. Chem. 3 65
[63] Jehoulet C and Bard A J 1991 Angew. Chem. Int. Ed. Engl. 30 836
[97] Hoppe R, Dähne W, Mattauch H and Rödder K M 1962 Angew. Chem. 74 903
[64] Dye J L, Ceraso J M, Lok M, Barnett B L and Tehan F J 1974 J. Am. Chem. Soc. 96 608
[98] Claassen H H, Selig H and Malm J G 1962 J. Am. Chem. Soc. 84 3593
[65] Tehan F J, Barnett B L and Dye J L 1974 J. Am. Chem. Soc. 96 7203
[99] Weinstock B, Weaver E E and Knop C P 1966 Inorg. Chem. 5 2189
[66] Dye J L 1979 Angew. Chem. Int. Ed. Engl. 18 587
[100] Peng F, Botana J, Wang Y, Ma Y and Miao M 2016 J. Phys. Chem. Lett. 7 4562
[67] Li Z, Yang J, Hou J G and Zhu Q 2004 Chem. Eur. J. 10 1592
[101] Drews T and Seppelt K 1997 Angew. Chem. Int. Ed. Engl. 36 273
[68] Schwarz U, Takemura K, Hanfl M and Syassen K 1998 Phys. Rev. Lett. 81 2711
[102] Stein L, Norris J R, Downs A J and Minihan A R 1978 J. Chem. Soc. Chem. Commun. 502
[69] Takemura K, Christensen N E, Novikov D L, Syassen K, Schwarz U and Hanfl M 2000 Phys. Rev. B 61 14399
[103] Seidel S, Seppelt K, van Wüllen C and Sun X Y 2007 Angew. Chem. Int. Ed. 46 6717
[70] Takemura K, Minomura S and Shimomura O 1982 Phys. Rev. Lett. 49 1772
[104] Zarifi N, Liu H, Tse J S and Zurek E 2018 J. Phys. Chem. C 122 2941
[71] Shamp A, Hooper J and Zurek E 2012 Inorg. Chem. 51 9333
[105] Peng F, Wang Y, Wang H, Zhang Y and Ma Y 2015 Phys. Rev. B 92 094104
[72] Hooper J and Zurek E 2012 Chem. Eur. J. 18 5013
[106] Zhu L, Liu H, Pickard C J, Zou G and Ma Y 2014 Nat. Chem. 6 644
[73] Desgreniers S, Tse J S, Matsuoka T, Ohishi Y and Tse J J 2015 Sci. Adv. 1 e1500669
[107] Connerade J P, Dolmatov V K and Lakshmi P A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 251
[74] Botana J and Miao M S 2014 Nat. Commun. 5 4861
[108] Zhang S, Bi H, Wei S, Wang J, Li Q and Ma Y 2015 J. Phys. Chem. C 119 24996
[75] Schilling J S 2006 High Press. Res. 26 145
[109] Li X, Hermann A, Peng F, Lv J, Wang Y, Wang H and Ma Y 2015 Sci. Rep. 5 16675
[76] Kobrin P H, Rosenberg R A, Becker U, Southworth S, Truesdale C M, Lindle D W, Thornton G, White M G, Poliakoff E D and Shirley D A 1983 J. Phys. B: At. Mol. Phys. 16 4339
[110] Miao M-s, Wang X-l, Brgoch J, Spera F, Jackson M G, Kresse G and Lin H-q 2015 J. Am. Chem. Soc. 137 14122
[77] Luo D, Wang Y, Yang G and Ma Y 2018 J. Phys. Chem. C 122 12448
[78] Higelin A and Riedel S 2017 19 High Oxidation States in Transition Metal Fluorides in Modern Synthesis Processes (Editors: Groult H, Leroux F R and Tressaud A) Elsevier p. 561
[111] Liu C, Gao H, Wang Y, Needs R J, Pickard C J, Sun J, Wang H T and Xing D 2019 Nat. Phys.
[79] Frenking G 2000 Nature 406 836
[112] Liu Z, Botana J, Hermann A, Valdez S, Zurek E, Yan D, Lin H-q and Miao M-s 2018 Nat. Commun. 9 951
[80] Seppelt K 2015 Chem. Rev. 115 1296
[81] Drews T, Supeł J, Hagenbach A and Seppelt K 2006 Inorg. Chem. 45 3782
[113] Liu H, Yao Y and Klug D D 2015 Phys. Rev. B 91 014102
[82] Craciun R, Picone D, Long R T, Li S, Dixon D A, Peterson K A and Christe K O 2010 Inorg. Chem. 49 1056
[114] Sanloup C, Bonev S A, Hochlaf M and Maynard-Casely H E 2013 Phys. Rev. Lett. 110 265501
[83] Botana J, Wang X, Hou C, Yan D, Lin H, Ma Y and Miao M-s 2015 Angew. Chem. Int. Ed. 54 9280
[115] Gao H, Sun J, Pickard C J and Needs R J 2019 Phys. Rev. Mater. 3 015002
[84] Jensen W B 2003 J. Chem. Edu. 80 952
[116] Wang Y, Zhang J, Liu H and Yang G 2015 Chem. Phys. Lett. 640 115
[85] Lin J, Zhao Z, Liu C, Zhang J, Du X, Yang G and Ma Y 2019 J. Am. Chem. Soc. 141 5409
[117] Cazorla C, Errandonea D and Sola E 2009 Phys. Rev. B 80 064105
[86] Gong Y, Zhou M, Kaupp M and Riedel S 2009 Angew. Chem. Int. Ed. 48 7879
[87] Zhang H, Li Y, Hou J, Tu K and Chen Z 2016 J. Am. Chem. Soc. 138 5644
[118] Loubeyre P, Jean-Louis M, LeToullec R and CharonG érard L 1993 Phys. Rev. Lett. 70 178
[88] Yang L M, Ganz E, Chen Z, Wang Z X and Schleyer P v R 2015 Angew. Chem. Int. Ed. 54 9468
[119] Chen Q F, Cai L C, Jing F Q and Chen D Q 2005 Chin. Phys. Lett. 22 2005
[89] Lipke M C and Tilley T D 2014 J. Am. Chem. Soc. 136 16387
[90] Khan A and Foucher D 2016 Coord. Chem. Rev. 312 41
[91] Wang Z X and Schleyer P v R 2002 Angew. Chem. Int. Ed. 41 4082
[92] Sreenithya A, Patel C, Hadad C M and Sunoj R B 2017 ACS Catal. 7 4189
[93] Liang H and Ciufolini M A 2011 Angew. Chem. Int. Ed. 50 11849
[94] Richardson R D and Wirth T 2006 Angew. Chem. Int. Ed. 45 4402
[95] Zhdankin V V 2013 Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons
[96] Schilter D 2019 Nat. Rev. Chem. 3 65
[97] Hoppe R, Dähne W, Mattauch H and Rödder K M 1962 Angew. Chem. 74 903
[98] Claassen H H, Selig H and Malm J G 1962 J. Am. Chem. Soc. 84 3593
[99] Weinstock B, Weaver E E and Knop C P 1966 Inorg. Chem. 5 2189
[100] Peng F, Botana J, Wang Y, Ma Y and Miao M 2016 J. Phys. Chem. Lett. 7 4562
[101] Drews T and Seppelt K 1997 Angew. Chem. Int. Ed. Engl. 36 273
[102] Stein L, Norris J R, Downs A J and Minihan A R 1978 J. Chem. Soc. Chem. Commun. 502
[103] Seidel S, Seppelt K, van Wüllen C and Sun X Y 2007 Angew. Chem. Int. Ed. 46 6717
[104] Zarifi N, Liu H, Tse J S and Zurek E 2018 J. Phys. Chem. C 122 2941
[105] Peng F, Wang Y, Wang H, Zhang Y and Ma Y 2015 Phys. Rev. B 92 094104
[106] Zhu L, Liu H, Pickard C J, Zou G and Ma Y 2014 Nat. Chem. 6 644
[107] Connerade J P, Dolmatov V K and Lakshmi P A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 251
[108] Zhang S, Bi H, Wei S, Wang J, Li Q and Ma Y 2015 J. Phys. Chem. C 119 24996
[109] Li X, Hermann A, Peng F, Lv J, Wang Y, Wang H and Ma Y 2015 Sci. Rep. 5 16675
[110] Miao M-s, Wang X-l, Brgoch J, Spera F, Jackson M G, Kresse G and Lin H-q 2015 J. Am. Chem. Soc. 137 14122
[111] Liu C, Gao H, Wang Y, Needs R J, Pickard C J, Sun J, Wang H T and Xing D 2019 Nat. Phys.
[112] Liu Z, Botana J, Hermann A, Valdez S, Zurek E, Yan D, Lin H-q and Miao M-s 2018 Nat. Commun. 9 951
[113] Liu H, Yao Y and Klug D D 2015 Phys. Rev. B 91 014102
[114] Sanloup C, Bonev S A, Hochlaf M and Maynard-Casely H E 2013 Phys. Rev. Lett. 110 265501
[115] Gao H, Sun J, Pickard C J and Needs R J 2019 Phys. Rev. Mater. 3 015002
[116] Wang Y, Zhang J, Liu H and Yang G 2015 Chem. Phys. Lett. 640 115
[117] Cazorla C, Errandonea D and Sola E 2009 Phys. Rev. B 80 064105
[118] Loubeyre P, Jean-Louis M, LeToullec R and CharonG érard L 1993 Phys. Rev. Lett. 70 178
[119] Chen Q F, Cai L C, Jing F Q and Chen D Q 2005 Chin. Phys. Lett. 22 2005
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[3] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[4] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[5] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[6] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[9] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[10] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[11] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[12] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[13] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[14] A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
Wen-Shu Shen(沈文舒), Lei Wu(吴雷), Tian-Ji Ou(欧天吉), Dong-Hui Yue(岳冬辉), Ting-Ting Ji(冀婷婷), Yong-Hao Han(韩永昊), Wen-Liang Xu(许文良), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2020, 29(1): 010702.
[15] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
No Suggested Reading articles found!