Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077301    DOI: 10.1088/1674-1056/28/7/077301
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and magnetic properties of CrI3 nanoribbons and nanotubes

Ji-Zhang Wang(王吉章)1,2, Jian-Qi Huang(黄建啟)1,2, Ya-Ning Wang(王雅宁)1,2, Teng Yang(杨腾)1, Zhi-Dong Zhang(张志东)1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Abstract  

CrI3 in two-dimensional (2D) forms has been attracting much attention lately due to its novel magnetic properties at atomic large scale. The size and edge tuning of electronic and magnetic properties for 2D materials has been a promising way to broaden or even enhance their utility, as the case with nanoribbons/nanotubes in graphene, black phosphorus, and transition metal dichalcogenides. Here we studied the CrI3 nanoribbon (NR) and nanotube (NT) systematically to seek the possible size and edge control of the electronic and magnetic properties. We find that ferromagnetic ordering is stable in all the NR and NT structures of interest. An enhancement of the Curie temperature TC can be expected when the structure goes to NR or NT from its 2D counterpart. The energy difference between the FM and AFM states can be even improved by up to 3-4 times in a zigzag nanoribbon (ZZNR), largely because of the electronic instability arising from a large density of states of iodine-5p orbitals at EF. In NT structures, shrinking the tube size harvests an enhancement of spin moment by up to 4%, due to the reduced crystal-field gap and the re-balance between the spin majority and minority populations.

Keywords:  CrI3      nanoribbon      nanotube      magnetism  
Received:  11 April 2019      Revised:  10 May 2019      Published:  05 July 2019
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  61.46.-w (Structure of nanoscale materials)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0206301) and the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (Grant No. U1537204).

Corresponding Authors:  Teng Yang     E-mail:  yangteng@imr.ac.cn

Cite this article: 

Ji-Zhang Wang(王吉章), Jian-Qi Huang(黄建啟), Ya-Ning Wang(王雅宁), Teng Yang(杨腾), Zhi-Dong Zhang(张志东) Electronic and magnetic properties of CrI3 nanoribbons and nanotubes 2019 Chin. Phys. B 28 077301

[1] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[2] Bora C, Bharali P, Baglari S, Dolui S and Konwar B 2013 Comps. Sci. Technol. 87 1
[3] Novoselov K S, Geim A K, Morozov S V, Y. Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[4] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[6] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[8] Xiao D, Liu G B, Feng W, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[9] Espinosa A, Munoz-Noval A, Garcia-Hernandez M, Serrano A, de la Morena J, Figuerola A, Quarta A, Pellegrino T, Wilhelm C and Garcia M 2013 J. Nanopart. Res. 15 1514
[10] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[11] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[12] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[13] Xing W Y, Chen Y Y, Odenthal P M, Zhang X, Yuan W, Su T, Song Q, Wang T Y, Zhong J N, Jia S, Xie X C, Li Y and Han W 2017 2D Mater. 4 024009
[14] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z and Zhang Z D 2018 Nat. Nanotechnol. 13 554
[15] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
[16] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J and Jarillo-Herrero P 2018 Science 360 1218
[17] Zhang Z D 2007 Philosophical Magazine 87 5309
[18] Zhang Z D, Suzuki O and March N H 2019 Advances in Applied Clifford Algebras 29 12
[19] Zhang Z D 2013 Chin. Phys. B 22 030513
[20] Huang B, Clark G, Klein D R, MacNeill D, NavarroMoratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P and Xu X D 2018 Nat. Nanotechnol. 13 544
[21] Jiang S W, Li L Z, Wang Z F, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
[22] Seyler K L, Zhong D, Klein D R, Gao S Y, Zhang X O, Huang B, Navarro-Moratalla E, Yang L, Cobden D H, McGuire M A, Yao W, Xiao D, JarilloHerrero P and Xu X D 2018 Nat. Phys. 14 277
[23] Dekker C 1999 Phys. Today 52 22
[24] Lieber C M 1998 Solid State Commun. 107 607
[25] Dresselhaus M S, Dresslhaus G and Avouris P 2001 Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Berlin: Springer)
[26] Saito R, Dresslhaus G and Dresselhaus M S 1999 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
[27] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[28] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[29] Ataca C, Sahin H, Akturk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
[30] Yang T, Okano S, Berber S and Tománek D 2006 Phys. Rev. Lett. 96 125502
[31] Popov I, Yang T, Berber S, Seifert G and Tománek D 2007 Phys. Rev. Lett. 99 085503
[32] Mihailovic D 2009 Prog. Mater. Sci. 54 309
[33] Han X, Stewart H M, Shevlin S A, Catlow C R A and Guo Z X 2014 Nano Lett. 14 4607
[34] Jiang W, Li S J, Liu H T, Lu G, Zheng F W and Zhang P 2019 Phys. Lett. A 383 754
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Kresse G and Furthmüller J 2006 Phys. Rev. B 54 11169
[37] Monkhorst H J and Pack J D 2006 Phys. Rev. B 13 5188
[38] Liu J Y, Sun Q, Kawazoe Y and Jena P 2006 Phys. Chem. Chem. Phys. 18 8777
[39] Hestenes M R and Stiefel E 1952 J. Res. Natl. Bur. Stand. 49 409
[40] Jorio A, Dresselhaus M, Saito R and Dresselhaus G 2011 Raman Spectroscopy in Graphene Related Systems (New York: WileyVCH)
[41] Grüneis A, Saito R, Samsonidze G G, Kimura T, Pimenta M A, Jorio A, Souza Filho A G, Dresselhaus G and Dresselhaus M S 2006 Phys. Rev. B 67 165402
[42] Saito R, Nugraha A, Hasdeo E, Siregar S, Guo H H and Yang T 2015 Phys. Status Solidi B 252 2363
[43] Stöhr J and Siegmann H C 2006 Magnetism from Fundamentals to Nanoscale Dynamics (Berlin: Springer)
[44] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612
[1] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[2] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[3] Charge structure factors of doped armchair nanotubes in the presence of electron-phonon interaction
Hamed Rezania, Farshad Azizi. Chin. Phys. B, 2020, 29(9): 096501.
[4] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[5] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[6] Facile and fast growth of high mobility nanoribbons of ZrTe5
Jingyue Wang(王璟岳), Jingjing Niu(牛晶晶), Xinqi Li(李新祺), Xiumei Ma(马秀梅), Yuan Yao(姚湲), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(6): 068102.
[7] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[8] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[9] Microstructure and ferromagnetism ofheavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[10] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[11] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[12] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
[13] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[14] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[15] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
No Suggested Reading articles found!