Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077102    DOI: 10.1088/1674-1056/28/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice

Xin Li(李欣)1,2, Rong Yu(俞榕)3, Qimiao Si4
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
4 Department of Physics & Astronomy, Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
Abstract  

Motivated by the growing interest in the novel quantum phases in materials with strong electron correlations and spin-orbit coupling, we study the interplay among the spin-orbit coupling, Kondo interaction, and magnetic frustration of a Kondo lattice model on a two-dimensional honeycomb lattice. We calculate the renormalized electronic structure and correlation functions at the saddle point based on a fermionic representation of the spin operators. We find a global phase diagram of the model at half-filling, which contains a variety of phases due to the competing interactions. In addition to a Kondo insulator, there is a topological insulator with valence bond solid correlations in the spin sector, and two antiferromagnetic phases. Due to the competition between the spin-orbit coupling and Kondo interaction, the direction of the magnetic moments in the antiferromagnetic phases can be either within or perpendicular to the lattice plane. The latter antiferromagnetic state is topologically nontrivial for moderate and strong spin-orbit couplings.

Keywords:  heavy fermion system      Kondo insulator      spin-orbit coupling  
Received:  16 March 2019      Revised:  22 April 2019      Published:  05 July 2019
PACS:  71.10.Hf (Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: 

Project supported by the Ministry of Science and Technology of China, the National Key R&D Program of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant No. 11674392), and the Research Funds of Remnin University of China (Grant No. 18XNLG24). Work at Rice was in part supported by the NSF Grant DMR-1920740 and the Robert A. Welch Foundation Grant C-1411. Q. S. acknowledges the hospitality and support by a Ulam Scholarship from the Center for Nonlinear Studies at Los Alamos National Laboratory.

Corresponding Authors:  Rong Yu     E-mail:  rong.yu@ruc.edu.cn

Cite this article: 

Xin Li(李欣), Rong Yu(俞榕), Qimiao Si Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice 2019 Chin. Phys. B 28 077102

[1] Löhneysen H 2010 J. Low Temp. Phys. 161 1
[2] Sachdev S 1999 Quantum Phase Transitions (New York: Cambridge University Press)
[3] Si Q and Steglich F 2010 Science 329 1161
[4] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[5] Löhneysen H von, Rosch A, Vojta M and Wolfle P 2007 Rev. Mod. Phys. 79 1015
[6] Tsunetsugu H, Sigrist M and Ueda K 1997 Rev. Mod. Phys. 69 809
[7] Yang Y F and Yu L 2015 Acta Phys. Sin. 64 217401 (in Chinese)
[8] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[9] Doniach S 1977 Physica B+C 91 231
[10] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524
[11] Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, L?hneysen H v, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351
[12] Paschen S, Luhmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P and Si Q 2004 Nature 432 881
[13] Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804
[14] Coleman P, Pépin C, Si Q and Ramazashvili R 2001 J. Phys.: Condens. Matter 13 R723
[15] Hertz J A 1976 Phys. Rev. B 14 1165
[16] Millis A J 1993 Phys. Rev. B 48 7183
[17] Si Q 2006 Physica B 378 23
[18] Si Q 2010 Phys. Stat. Solid. B 247 476
[19] Pixley J H, Yu R and Si Q 2014 Phys. Rev. Lett. 113 176402
[20] Si Q and Paschen S 2013 Phys. Stat. Solid. (b) 250 425
[21] Mong R S K, Essin A M and Moore J E 2010 Phys. Rev. B 81 245209
[22] Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T, Duijn J v, Balicas L, Millican J N, Macaluso R T and Chan J Y 2006 Phys. Rev. Lett. 96 087204
[23] Chen G 2017 Phys. Rev. B 94 205107
[24] Dzero M, Sun K, Galitski V and Coleman P 2010 Phys. Rev. Lett. 104 106408
[25] Barla A, Derr J, Sanchez J P, Salce B, Lapertot G, Doyle B P, Rüffer R, Lengsdorf R, Abd-Elmeguid M M and Flouquet J 2005 Phys. Rev. Lett. 94 166401
[26] Yamamoto S J and Si Q 2010 J. Low Temp. Phys. 161 233
[27] Lai H H, Grefe S E, Paschen S and Si Q 2018 Pro. Natl. Acad. Sci. USA 115 93
[28] Dzsaber S, Prochaska L, Sidorenko A, Eguchi G, Svagera R, Waas M, Prokofiev A, Si Q and Paschen S 2017 Phys. Rev. Lett. 118 246601
[29] Dzsaber S, Yan X, Eguchi G, Prokofiev A, Shiroka T, Blaha P, Rubel O, Grefe S E, Lai H H, Si Q and Paschen S 2018 arXiv:1811.02819
[30] Feng X Y, Chung C H, Dai J and Si Q 2013 Phys. Rev. Lett. 111 016402
[31] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[32] Feng X Y, Zhong H, Dai J and Si Q 2016 arXiv:1605.02380
[33] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[34] Zhong Y, Wang Y F, Wang Y Q and Luo H G 2013 Phys. Rev. B 87 035128
[35] Lacroix C and Cyrot M 1979 Phys. Rev. B 20 1969
[36] Li H, Liu Y, Zhang G M and Yu L 2015 J. Phys.: Condens. Matter 27 425601
[37] Li H, Song H F and Liu Y 2016 Euro. Phys. Lett. 116 37005
[38] Ganesh R, Brink J van den and Nishimoto S 2013 Phys. Rev. Lett. 110 127203
[39] Clark B K, Abanin D A and Sondhi S L 2011 Phys. Rev. Lett. 107 087204
[40] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[41] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[42] Pixley J H, Yu R, Paschen S and Si Q 2018 Phys. Rev. B 98 085110
[43] Zhou Y, Wu Q, Rosa P F S, Yu R, Guo J, Yi W, Zhang S, Wang Z, Wang H, Cai S, Yang K, Li A, Jiang Z, Zhang S, Wei X, Huang Y, Yang Y F, Fisk Z, Si Q, Sun L and Zhao Z 2017 Sci. Bull. 62 1439
[44] Kasaya M, Tani T, Iga F and Kasuya T 1988 J. Magn. Magn. Mater. 76&77 278
[45] Malik S K, Adroja D T, Dhar S K, Vijayaraghavan R and Padalia B D 1989 Phys. Rev. B 40 2414
[46] Adroja D T and Rainford B D 1994 Physica B 194-196 363
[47] Hu J, Alicea J, Wu R, and Franz M 2012 Phys. Rev. Lett. 109 266801
[1] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[2] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[3] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[4] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[5] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
[6] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[7] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[8] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[9] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[10] Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华). Chin. Phys. B, 2019, 28(5): 056701.
[11] Particle-hole fluctuations and possible superconductivity in doped α-RuCl3
Bin-Bin Wang(王斌斌), Wei Wang(王巍), Shun-Li Yu(于顺利), Jian-Xin Li(李建新). Chin. Phys. B, 2019, 28(5): 057402.
[12] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[13] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
[14] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[15] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
No Suggested Reading articles found!