Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 066101    DOI: 10.1088/1674-1056/28/6/066101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure

Saad Tariq1,5, A A Mubarak2, Saher Saad3, M Imran Jamil4, S M Sohail Gilani3,5
1 Center of Excellence in Solid State Physics, University of Punjab, Lahore 54590, Pakistan;
2 Physics Department, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah, Saudi Arabia;
3 Center for High Energy Physics, University of the Punjab, Lahore 54590, Pakistan;
4 Department of Physics, School of Science, University of Management and Technology, Lahore 54770, Pakistan;
5 Faculty of Science, University of Central Punjab, Campus 2C, Lahore 54000, Pakistan
Abstract  

In continuation of our recent report on molybdates[Appl. Phys. A 124, 44 (2018)], the structural, electronic, elastic, and optical properties of ZMoO3 (Z=Ba and Sr) molybdates are investigated under pressure (10 GPa-50 GPa) comprehensively by deploying the density functional theory. Our investigations show that the studied compounds exhibit stable cubic phase with metallic attributes. The thermodynamic parameters such as enthalpy of formation, Debye, and melting temperatures of the compounds are observed to increase with pressure. While the Grüninsen parameter and the coefficient of super-plastic deformation decrease as the pressure increases. Mechanical properties elucidate an increase in measured values of hardness, bulk, shear, and young's moduli with pressure. Our results suggest that the studied compounds are useful in high pressure optoelectronic devices. The optical properties of BaMoO3 (BMO) and SrMoO3 (SMO) are computed for the radiation of up to 35 eV. The present compounds show beneficial optical applications in the anti-reflection coating, lenses, and the high avoiding solar heating applications in the variant applied pressure.

Keywords:  optical properties      high pressure      elastic properties      electronic properties     
Received:  10 December 2018      Published:  05 June 2019
PACS:  61.50.-f (Structure of bulk crystals)  
  62.20.D- (Elasticity)  
  74.62.Fj (Effects of pressure)  
  31.15.E-  
Corresponding Authors:  Saad Tariq     E-mail:  saadigi@hotmail.com

Cite this article: 

Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure 2019 Chin. Phys. B 28 066101

[1] Lu Y, Lu W G and Wang L 2017 Chin. Phys. Lett. 34 017102
[2] Sun J H and Tang H K 2018 Chin. Phys. B 27 077502
[3] Li X Y, Huang C, Zhu Y, Li J B, Fan J Y, Pan Y F, Shi D N and Ma C L 2018 Acta Phys. Sin. 67 137101 (in Chinese)
[4] Xiao H Y, Qin Y K, Liu L N, et al. 2018 Acta Phys. Sin. 67 140702 (in Chinese)
[5] Meng K K, Zhao X P, Miao J, Xu X H, Zhao J H and Jiang Y 2018 Acta Phys. Sin. 67 131202 (in Chinese)
[6] Jiang Y Q and Peng P 2018 Acta Phys. Sin. 67 132101 (in Chinese)
[7] Huang L, Liu W L and Deng C S 2018 Acta Phys. Sin. 67 136101 (in Chinese)
[8] Tariq S, et al. 2015 AIP Adv. 5 077111
[9] Nadeem S et al. 2016 J. Theor. Comput. Chem. 15 1650044
[10] Nazi G, et al. 2015 Comput. Condens. Matter 4 32
[11] Gilani S S, et al. 2018 Chin. J. Phys. 56 308
[12] Jin F, et al. 2018 Chin. Phys. B 27 077801
[13] Deligoz E, Ozisik H and Colakoglu K 2014 Philos. Mag. 94 1379
[14] Ozisik H B, Ozisik H and Deligoz E 2017 Philos. Mag. 97 549
[15] Korozlu N, Colakoglu K and Deligoz E 2009 J. Phys.: Condens. Matter 21 175406
[16] Scott J 2007 Science 315 954
[17] Cross E 2004 Nature 432 24
[18] Schneider T, et al. 2007 Opt. Mater. 29 1871
[19] Watton R 1989 Ferroelectrics 91 87
[20] Liu P, et al. 2017 Chin Phys Lett. 34 027101
[21] Zhao Q Z and Zhang D L 2017 Chin Phys Lett. 34 034207
[22] Li Z and Zheng G Q 2018 Chin. Phys. B 27 077404
[23] Sun J P and Zhang D 2017 Chin. Phys. Lett. 34 027102
[24] Zhu P, et al. 2018 Chin. Phys. B 27 076103
[25] Cheng J G, et al. 2018 Chin. Phys. B 27 077403
[26] Tariq S, et al. 2018 Appl Phys A 124 44
[27] Nassif V, Carbonio R E and Alonso J A 1999 J. Solid State Chem. 146 266
[28] Mizoguchi H, et al. 1999 J. Appl. Phys. 85 6502
[29] Mizoguchi H, et al. 2000 J. Appl. Phys. 87 4617
[30] Kurosaki K, et al. 2004 J. Alloys Compd. 372 65
[31] Kubo J and Ueda W 2009 Mater. Res. Bull. 44 906
[32] Wang H, et al. 2001 J. Cryst. Growth 226 261
[33] Radetinac A, et al. 2014 Appl. Phys. Lett. 105 114108
[34] Sahu M, et al. 2015 J. Nucl. Mater. 457 29
[35] Hopper H, et al. 2016 J. Solid State Chem. 234 87
[36] Brixner L 1960 J. Inorg. Nucl. Chem. 14 225
[37] Scholder R and Klemm W 1954 Angewandte Chemie 66 461
[38] Andersen O K 1975 Phys. Rev. B 12 3060
[39] Perdew J P, et al. 1992 Phys. Rev. B 46 6671
[40] Singh D J and Nordstrom L 2006 Planewaves, Pseudopotentials, and the LAPW Method (Springer Science & Business Media)
[41] Blaha P, et al. 2001 wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties, ISBN 3-9501031-1-2
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Nazir G, et al. 2018 Acta Phys. Polon. Ser. A 133 105
[44] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[45] Goldschmidt V M 1926 Naturwissenschaften 14 477
[46] Karki B, Ackland G and Crain J 1997 J. Phys.: Condens. Matter 9 8579
[47] Souvatzis P, et al. 2004 Phys. Rev. B 70 012201
[48] Tian Y, Xu B and Zhao Z 2012 J. Refract. Met. Hard Mater. 33 93
[49] Johnson R 1988 Phys. Rev. B 37 3924
[50] Pettifor D 1992 Mater. Sci. Technol. 8 345
[51] Hao Y J, et al. 2006 Physica B 382 118
[52] Fine M, Brown L and Marcus H 1984 Scr. Metall. 18 951
[53] Screiber E, Anderson O and Soga N 1973 Elastic Constants and Their Measurements (New York: McGrawHill), ISBN-10: 0070556032, ISBN-13: 978-0070556034
[54] Blanco M, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 57
[55] Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. 46 6131
[56] Fox M 2002 Optical Properties of Solids (Oxford: Oxford University Press) pp. 2-7, ISBN 978-0-19-850613-3
[57] Mubarak A A 2016 Int. J. Mod. Phys B 30 1650141
[1] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[2] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[3] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[4] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[5] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[6] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[7] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[8] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[9] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[10] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[11] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[12] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[13] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[14] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬), Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), Si-Ning Yun(云斯宁). Chin. Phys. B, 2020, 29(10): 106102.
[15] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影), Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
No Suggested Reading articles found!