Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 066101    DOI: 10.1088/1674-1056/28/6/066101

Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure

Saad Tariq1,5, A A Mubarak2, Saher Saad3, M Imran Jamil4, S M Sohail Gilani3,5
1 Center of Excellence in Solid State Physics, University of Punjab, Lahore 54590, Pakistan;
2 Physics Department, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah, Saudi Arabia;
3 Center for High Energy Physics, University of the Punjab, Lahore 54590, Pakistan;
4 Department of Physics, School of Science, University of Management and Technology, Lahore 54770, Pakistan;
5 Faculty of Science, University of Central Punjab, Campus 2C, Lahore 54000, Pakistan

In continuation of our recent report on molybdates[Appl. Phys. A 124, 44 (2018)], the structural, electronic, elastic, and optical properties of ZMoO3 (Z=Ba and Sr) molybdates are investigated under pressure (10 GPa-50 GPa) comprehensively by deploying the density functional theory. Our investigations show that the studied compounds exhibit stable cubic phase with metallic attributes. The thermodynamic parameters such as enthalpy of formation, Debye, and melting temperatures of the compounds are observed to increase with pressure. While the Grüninsen parameter and the coefficient of super-plastic deformation decrease as the pressure increases. Mechanical properties elucidate an increase in measured values of hardness, bulk, shear, and young's moduli with pressure. Our results suggest that the studied compounds are useful in high pressure optoelectronic devices. The optical properties of BaMoO3 (BMO) and SrMoO3 (SMO) are computed for the radiation of up to 35 eV. The present compounds show beneficial optical applications in the anti-reflection coating, lenses, and the high avoiding solar heating applications in the variant applied pressure.

Keywords:  optical properties      high pressure      elastic properties      electronic properties  
Received:  10 December 2018      Revised:  04 March 2019      Accepted manuscript online: 
PACS:  61.50.-f (Structure of bulk crystals)  
  62.20.D- (Elasticity)  
  74.62.Fj (Effects of pressure)  
Corresponding Authors:  Saad Tariq     E-mail:

Cite this article: 

Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure 2019 Chin. Phys. B 28 066101

[1] Lu Y, Lu W G and Wang L 2017 Chin. Phys. Lett. 34 017102
[2] Sun J H and Tang H K 2018 Chin. Phys. B 27 077502
[3] Li X Y, Huang C, Zhu Y, Li J B, Fan J Y, Pan Y F, Shi D N and Ma C L 2018 Acta Phys. Sin. 67 137101 (in Chinese)
[4] Xiao H Y, Qin Y K, Liu L N, et al. 2018 Acta Phys. Sin. 67 140702 (in Chinese)
[5] Meng K K, Zhao X P, Miao J, Xu X H, Zhao J H and Jiang Y 2018 Acta Phys. Sin. 67 131202 (in Chinese)
[6] Jiang Y Q and Peng P 2018 Acta Phys. Sin. 67 132101 (in Chinese)
[7] Huang L, Liu W L and Deng C S 2018 Acta Phys. Sin. 67 136101 (in Chinese)
[8] Tariq S, et al. 2015 AIP Adv. 5 077111
[9] Nadeem S et al. 2016 J. Theor. Comput. Chem. 15 1650044
[10] Nazi G, et al. 2015 Comput. Condens. Matter 4 32
[11] Gilani S S, et al. 2018 Chin. J. Phys. 56 308
[12] Jin F, et al. 2018 Chin. Phys. B 27 077801
[13] Deligoz E, Ozisik H and Colakoglu K 2014 Philos. Mag. 94 1379
[14] Ozisik H B, Ozisik H and Deligoz E 2017 Philos. Mag. 97 549
[15] Korozlu N, Colakoglu K and Deligoz E 2009 J. Phys.: Condens. Matter 21 175406
[16] Scott J 2007 Science 315 954
[17] Cross E 2004 Nature 432 24
[18] Schneider T, et al. 2007 Opt. Mater. 29 1871
[19] Watton R 1989 Ferroelectrics 91 87
[20] Liu P, et al. 2017 Chin Phys Lett. 34 027101
[21] Zhao Q Z and Zhang D L 2017 Chin Phys Lett. 34 034207
[22] Li Z and Zheng G Q 2018 Chin. Phys. B 27 077404
[23] Sun J P and Zhang D 2017 Chin. Phys. Lett. 34 027102
[24] Zhu P, et al. 2018 Chin. Phys. B 27 076103
[25] Cheng J G, et al. 2018 Chin. Phys. B 27 077403
[26] Tariq S, et al. 2018 Appl Phys A 124 44
[27] Nassif V, Carbonio R E and Alonso J A 1999 J. Solid State Chem. 146 266
[28] Mizoguchi H, et al. 1999 J. Appl. Phys. 85 6502
[29] Mizoguchi H, et al. 2000 J. Appl. Phys. 87 4617
[30] Kurosaki K, et al. 2004 J. Alloys Compd. 372 65
[31] Kubo J and Ueda W 2009 Mater. Res. Bull. 44 906
[32] Wang H, et al. 2001 J. Cryst. Growth 226 261
[33] Radetinac A, et al. 2014 Appl. Phys. Lett. 105 114108
[34] Sahu M, et al. 2015 J. Nucl. Mater. 457 29
[35] Hopper H, et al. 2016 J. Solid State Chem. 234 87
[36] Brixner L 1960 J. Inorg. Nucl. Chem. 14 225
[37] Scholder R and Klemm W 1954 Angewandte Chemie 66 461
[38] Andersen O K 1975 Phys. Rev. B 12 3060
[39] Perdew J P, et al. 1992 Phys. Rev. B 46 6671
[40] Singh D J and Nordstrom L 2006 Planewaves, Pseudopotentials, and the LAPW Method (Springer Science & Business Media)
[41] Blaha P, et al. 2001 wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties, ISBN 3-9501031-1-2
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Nazir G, et al. 2018 Acta Phys. Polon. Ser. A 133 105
[44] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[45] Goldschmidt V M 1926 Naturwissenschaften 14 477
[46] Karki B, Ackland G and Crain J 1997 J. Phys.: Condens. Matter 9 8579
[47] Souvatzis P, et al. 2004 Phys. Rev. B 70 012201
[48] Tian Y, Xu B and Zhao Z 2012 J. Refract. Met. Hard Mater. 33 93
[49] Johnson R 1988 Phys. Rev. B 37 3924
[50] Pettifor D 1992 Mater. Sci. Technol. 8 345
[51] Hao Y J, et al. 2006 Physica B 382 118
[52] Fine M, Brown L and Marcus H 1984 Scr. Metall. 18 951
[53] Screiber E, Anderson O and Soga N 1973 Elastic Constants and Their Measurements (New York: McGrawHill), ISBN-10: 0070556032, ISBN-13: 978-0070556034
[54] Blanco M, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 57
[55] Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. 46 6131
[56] Fox M 2002 Optical Properties of Solids (Oxford: Oxford University Press) pp. 2-7, ISBN 978-0-19-850613-3
[57] Mubarak A A 2016 Int. J. Mod. Phys B 30 1650141
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[6] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[10] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[11] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[14] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[15] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
No Suggested Reading articles found!