CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure |
Saad Tariq1,5, A A Mubarak2, Saher Saad3, M Imran Jamil4, S M Sohail Gilani3,5 |
1 Center of Excellence in Solid State Physics, University of Punjab, Lahore 54590, Pakistan;
2 Physics Department, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah, Saudi Arabia;
3 Center for High Energy Physics, University of the Punjab, Lahore 54590, Pakistan;
4 Department of Physics, School of Science, University of Management and Technology, Lahore 54770, Pakistan;
5 Faculty of Science, University of Central Punjab, Campus 2C, Lahore 54000, Pakistan |
|
|
Abstract In continuation of our recent report on molybdates[Appl. Phys. A 124, 44 (2018)], the structural, electronic, elastic, and optical properties of ZMoO3 (Z=Ba and Sr) molybdates are investigated under pressure (10 GPa-50 GPa) comprehensively by deploying the density functional theory. Our investigations show that the studied compounds exhibit stable cubic phase with metallic attributes. The thermodynamic parameters such as enthalpy of formation, Debye, and melting temperatures of the compounds are observed to increase with pressure. While the Grüninsen parameter and the coefficient of super-plastic deformation decrease as the pressure increases. Mechanical properties elucidate an increase in measured values of hardness, bulk, shear, and young's moduli with pressure. Our results suggest that the studied compounds are useful in high pressure optoelectronic devices. The optical properties of BaMoO3 (BMO) and SrMoO3 (SMO) are computed for the radiation of up to 35 eV. The present compounds show beneficial optical applications in the anti-reflection coating, lenses, and the high avoiding solar heating applications in the variant applied pressure.
|
Received: 10 December 2018
Revised: 04 March 2019
Accepted manuscript online:
|
|
Corresponding Authors:
Saad Tariq
E-mail: saadigi@hotmail.com
|
Cite this article:
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure 2019 Chin. Phys. B 28 066101
|
[1] |
Lu Y, Lu W G and Wang L 2017 Chin. Phys. Lett. 34 017102
|
[2] |
Sun J H and Tang H K 2018 Chin. Phys. B 27 077502
|
[3] |
Li X Y, Huang C, Zhu Y, Li J B, Fan J Y, Pan Y F, Shi D N and Ma C L 2018 Acta Phys. Sin. 67 137101 (in Chinese)
|
[4] |
Xiao H Y, Qin Y K, Liu L N, et al. 2018 Acta Phys. Sin. 67 140702 (in Chinese)
|
[5] |
Meng K K, Zhao X P, Miao J, Xu X H, Zhao J H and Jiang Y 2018 Acta Phys. Sin. 67 131202 (in Chinese)
|
[6] |
Jiang Y Q and Peng P 2018 Acta Phys. Sin. 67 132101 (in Chinese)
|
[7] |
Huang L, Liu W L and Deng C S 2018 Acta Phys. Sin. 67 136101 (in Chinese)
|
[8] |
Tariq S, et al. 2015 AIP Adv. 5 077111
|
[9] |
Nadeem S et al. 2016 J. Theor. Comput. Chem. 15 1650044
|
[10] |
Nazi G, et al. 2015 Comput. Condens. Matter 4 32
|
[11] |
Gilani S S, et al. 2018 Chin. J. Phys. 56 308
|
[12] |
Jin F, et al. 2018 Chin. Phys. B 27 077801
|
[13] |
Deligoz E, Ozisik H and Colakoglu K 2014 Philos. Mag. 94 1379
|
[14] |
Ozisik H B, Ozisik H and Deligoz E 2017 Philos. Mag. 97 549
|
[15] |
Korozlu N, Colakoglu K and Deligoz E 2009 J. Phys.: Condens. Matter 21 175406
|
[16] |
Scott J 2007 Science 315 954
|
[17] |
Cross E 2004 Nature 432 24
|
[18] |
Schneider T, et al. 2007 Opt. Mater. 29 1871
|
[19] |
Watton R 1989 Ferroelectrics 91 87
|
[20] |
Liu P, et al. 2017 Chin Phys Lett. 34 027101
|
[21] |
Zhao Q Z and Zhang D L 2017 Chin Phys Lett. 34 034207
|
[22] |
Li Z and Zheng G Q 2018 Chin. Phys. B 27 077404
|
[23] |
Sun J P and Zhang D 2017 Chin. Phys. Lett. 34 027102
|
[24] |
Zhu P, et al. 2018 Chin. Phys. B 27 076103
|
[25] |
Cheng J G, et al. 2018 Chin. Phys. B 27 077403
|
[26] |
Tariq S, et al. 2018 Appl Phys A 124 44
|
[27] |
Nassif V, Carbonio R E and Alonso J A 1999 J. Solid State Chem. 146 266
|
[28] |
Mizoguchi H, et al. 1999 J. Appl. Phys. 85 6502
|
[29] |
Mizoguchi H, et al. 2000 J. Appl. Phys. 87 4617
|
[30] |
Kurosaki K, et al. 2004 J. Alloys Compd. 372 65
|
[31] |
Kubo J and Ueda W 2009 Mater. Res. Bull. 44 906
|
[32] |
Wang H, et al. 2001 J. Cryst. Growth 226 261
|
[33] |
Radetinac A, et al. 2014 Appl. Phys. Lett. 105 114108
|
[34] |
Sahu M, et al. 2015 J. Nucl. Mater. 457 29
|
[35] |
Hopper H, et al. 2016 J. Solid State Chem. 234 87
|
[36] |
Brixner L 1960 J. Inorg. Nucl. Chem. 14 225
|
[37] |
Scholder R and Klemm W 1954 Angewandte Chemie 66 461
|
[38] |
Andersen O K 1975 Phys. Rev. B 12 3060
|
[39] |
Perdew J P, et al. 1992 Phys. Rev. B 46 6671
|
[40] |
Singh D J and Nordstrom L 2006 Planewaves, Pseudopotentials, and the LAPW Method (Springer Science & Business Media)
|
[41] |
Blaha P, et al. 2001 wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties, ISBN 3-9501031-1-2
|
[42] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[43] |
Nazir G, et al. 2018 Acta Phys. Polon. Ser. A 133 105
|
[44] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[45] |
Goldschmidt V M 1926 Naturwissenschaften 14 477
|
[46] |
Karki B, Ackland G and Crain J 1997 J. Phys.: Condens. Matter 9 8579
|
[47] |
Souvatzis P, et al. 2004 Phys. Rev. B 70 012201
|
[48] |
Tian Y, Xu B and Zhao Z 2012 J. Refract. Met. Hard Mater. 33 93
|
[49] |
Johnson R 1988 Phys. Rev. B 37 3924
|
[50] |
Pettifor D 1992 Mater. Sci. Technol. 8 345
|
[51] |
Hao Y J, et al. 2006 Physica B 382 118
|
[52] |
Fine M, Brown L and Marcus H 1984 Scr. Metall. 18 951
|
[53] |
Screiber E, Anderson O and Soga N 1973 Elastic Constants and Their Measurements (New York: McGrawHill), ISBN-10: 0070556032, ISBN-13: 978-0070556034
|
[54] |
Blanco M, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 57
|
[55] |
Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. 46 6131
|
[56] |
Fox M 2002 Optical Properties of Solids (Oxford: Oxford University Press) pp. 2-7, ISBN 978-0-19-850613-3
|
[57] |
Mubarak A A 2016 Int. J. Mod. Phys B 30 1650141
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|