Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 064403    DOI: 10.1088/1674-1056/28/6/064403
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-dimensional thermal illusion devices with arbitrary shape

Xingwei Zhang(张兴伟)1, Xiao He(何晓)1, Linzhi Wu(吴林志)1,2
1 Key Laboratory of Advanced Ship Materials and Mechanics, College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China;
2 Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China
Abstract  

Since the concept of invisible cloak was proposed by Pendry and Leonhardt in 2006, many researchers have applied the theory of coordinate transformation to thermodynamics and overcome the complexity of inhomogeneous and anisotropic of material parameters. However, only two-dimensional (2D) thermal illusion devices are researched recently. According to this situation, our study focuses on three-dimensional (3D) thermal illusion devices including shrinker (or invisible cloak), concentrator, amplifier, reshaper, and rotator with arbitrary shape in a general way. In this paper, the corresponding material parameters of thermal illusion devices mentioned above are derived based on the theory of transformation thermodynamics and the simulated results agree well with the theoretical derivations. In addition, the conventional invisible cloak just controls the temperature gradient rather than the temperature value which is more concerned in physical applications. Here, we find that the temperature value of the cloaked object can be controlled by adjusting the location of the original point of the coordinate system.

Keywords:  thermal illusion device      metamaterials      transformation thermaldynamics     
Received:  14 January 2019      Published:  05 June 2019
PACS:  44.10.+i (Heat conduction)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  07.05.Tp (Computer modeling and simulation)  
  05.70.-a (Thermodynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11702069) and the Fundamental Research Funds for the Central Universities, China (Grant No. HEUCFM180203).

Corresponding Authors:  Xiao He, Linzhi Wu     E-mail:  hit_hx@163.com;wulinzhi@hrbeu.edu.cn

Cite this article: 

Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志) Three-dimensional thermal illusion devices with arbitrary shape 2019 Chin. Phys. B 28 064403

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Lax M and Nelson D F 1976 Phys. Rev. B 13 1777
[3] Shalaev V M 2008 Science 322 384
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[5] Zhang S, Xia C G and Fang N 2011 Phys. Rev. Lett. 106 024301
[6] Popa B I, Zigoneanu L and Cummer S A 2011 Phys. Rev. Lett. 106 253901
[7] Brun M, Guenneau S and Movchan A B 2009 Appl. Phys. Lett. 94 061903
[8] Zhang S, Genov D A, Sun C and Zhang X 2008 Phys. Rev. Lett. 100 123002
[9] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[10] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[11] Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103
[12] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[13] Han T C, Bai X, Gao D L, Thong J T L, Li B W and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[14] Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
[15] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S and Huang J P 2015 Phys. Rev. Lett. 115 195503
[16] Shen X Y, Li Y, Jiang C R and Huang J P 2016 Phys. Rev. Lett. 117 055501
[17] Yang T Z, Su Y S, Xu W K and Yang X D 2016 Appl. Phys. Lett. 109 120905-1
[18] Shen X Y, Y Li, Jiang C R, Ni Y S and Huang J P 2016 Appl. Phys. Lett. 109 031907
[19] Shen X Y, Jiang C R, Li Y and Huang J P 2016 Appl. Phys. Lett. 109 201906
[20] He X, Yang T Z, Zhang X W, Wu L Z and He X Q 2017 Sci. Rep. 7 16671
[21] Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731
[22] He X and Wu L Z 2013 Phys. Rev. E 88 033201
[23] Maire J, Anufriev R, Yanagisawa R, Ramiere A, Volz S and Nomura M 2017 Sci. Adv. 3 E1700027
[24] Hamed A and Ndao S 2018 Int. J. Heat Mass Transfer 121 10
[25] Shang J, Wang R Z, Xin C, Dai G L and Huang J P 2018 Int. J. Heat Mass Transfer 121 321
[26] Wang R Z, Xu L J, Ji Q and Huang J P 2018 J. Appl. Phys. 123 115117
[27] Li Y, Bai X, Yang T Z, Luo H L and Qiu C W 2018 Nat. Commun. 9 273
[28] He X, Yang T Z and Wu L Z 2018 J. Heat Transfer 140 102001
[29] Xu H Y, Shi X H, Gao F, Sun H D and Zhang B L 2014 Phys. Rev. Lett. 112 054301
[30] He X and Wu L Z 2014 Appl. Phys. Lett. 105 221904
[31] Dupont G, Guenneau S, Enoch S, Demesy G, Nicolet A, Zolla F and Diatta A 2009 Opt. Express 17 22603
[32] Chen T H, Yang F and Mei Z L 2015 Physica Status Solidi A 212 1746
[33] Wang R, Xu L J and Huang J P 2017 J. Appl. Phys. 122 215107
[34] Yang S, Xu L J, Wang R Z and Huang J P 2017 Appl. Phys. Lett. 111 121908
[35] Hou Q W, Zhao X P, Meng T and Liu C L 2016 Appl. Phys. Lett. 109 103506
[36] Zhou S L, Hu R and Luo X B 2018 Int. J. Heat Mass Transfer 127 607
[37] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237
[38] Xu L J and Huang J P 2018 Phys. Lett. A 382 3313
[1] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[2] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[3] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[4] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷), Yidong Hou(侯宜栋). Chin. Phys. B, 2020, 29(10): 107303.
[5] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[6] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[7] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
[8] Controlling flexural waves in thin plates by using transformation acoustic metamaterials
Xing Chen(陈幸), Li Cai(蔡力), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(5): 057803.
[9] Robust stability characterizations of active metamaterials with non-Foster loads
Yi-Feng Fan(范逸风), Yong-Zhi Sun(孙永志). Chin. Phys. B, 2018, 27(2): 028102.
[10] Homogeneous transparent device and its layered realization
Cheng-Fu Yang(杨成福), Ming Huang(黄铭), Jing-Jing Yang(杨晶晶), Fu-Chun Mao(毛福春), Ting-Hua Li(李廷华), Peng Li(黎鹏), Peng-Shan Ren(任鹏姗). Chin. Phys. B, 2018, 27(12): 124101.
[11] Metamaterials and metasurfaces for designing metadevices: Perfect absorbers and microstrip patch antennas
Yahong Liu(刘亚红), Xiaopeng Zhao(赵晓鹏). Chin. Phys. B, 2018, 27(11): 117805.
[12] Applications of nanostructures in wide-field, label-free super resolution microscopy
Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青). Chin. Phys. B, 2018, 27(11): 118704.
[13] Retrieval of high-order susceptibilities of nonlinear metamaterials
Zhi-Yu Wang(王志宇), Jin-Peng Qiu(邱仅朋), Hua Chen(陈华), Jiong-Jiong Mo(莫炯炯), Fa-Xin Yu(郁发新). Chin. Phys. B, 2017, 26(9): 094207.
[14] Guided mode resonance in planar metamaterials consistingof two ring resonators with different sizes
Zhen Yu(俞禛), Hang Che(陈航), Jianjun Liu(刘建军), Xufeng Jing(井绪峰), Xiangjun Li(李向军), Zhi Hong(洪治). Chin. Phys. B, 2017, 26(7): 077804.
[15] Mechanically tunable metamaterials terahertz dual-band bandstop filter
Fangrong Hu(胡放荣), Xin Xu(胥欣), Peng Li(李鹏), Xinlong Xu(徐新龙), Yue'e Wang(王月娥). Chin. Phys. B, 2017, 26(7): 074219.
No Suggested Reading articles found!