Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056801    DOI: 10.1088/1674-1056/28/5/056801
RAPID COMMUNICATION Prev   Next  

Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer

Zhipeng Song(宋志朋)1, Bao Lei(雷宝)1, Yun Cao(曹云)1, Jing Qi(戚竞)1, Hao Peng(彭浩)1, Qin Wang(汪琴)1, Li Huang(黄立)1, Hongliang Lu(路红亮)1, Xiao Lin(林晓)1,3, Ye-Liang Wang(王业亮)1,2, Shixuan Du(杜世萱)1,3, Hong-Jun Gao(高鸿钧)1,3
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
3 CAS Center for Excellence in Topological Quantum Computation, Beijing 100049, China
Abstract  

Two-dimensional (2D) materials provide a platform to exploit the novel physical properties of functional nanodevices. Here, we report on the formation of a new 2D layered material, a well-ordered monolayer TiTe2, on a Au(111) surface by molecular beam epitaxy (MBE). Low-energy electron diffraction (LEED) measurements of the samples indicate that the TiTe2 film forms (√3×√7) superlattice with respect to the Au(111) substrate, which has three different orientations. Scanning tunneling microscopy (STM) measurements clearly show three ordered domains consistent with the LEED patterns. Density functional theory (DFT) calculations further confirm the formation of 2H-TiTe2 monolayer on the Au(111) surface with Te as buffer layer. The fabrication of this 2D layered heterostructure expands 2D material database, which may bring new physical properties for future applications.

Keywords:  TiTe2      epitaxial fabrication      superlattice      scanning tunneling microscopy (STM)      low-energy electron diffraction (LEED)  
Received:  03 February 2019      Revised:  05 March 2019      Published:  05 May 2019
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: 

Project supported by the National Key Research & Development Program of China (Grant Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61504149, 61725107, 51572290, and 61622116), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), the University of Chinese Academy of Sciences, and the CAS Key Laboratory of Vacuum Physics.

Corresponding Authors:  Hongliang Lu     E-mail:  luhl@ucas.ac.cn

Cite this article: 

Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer 2019 Chin. Phys. B 28 056801

[1] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[2] Pan Y, Zhang L Z, Huang L, Li L F, Meng L, Gao M, Huan Q, Lin X, Wang Y L, Du S X, Freund H J and Gao H J 2014 Small 10 2215
[3] Lin X, Lu J C, Shao Y, Zhang Y Y, Wu X, Pan J B, Gao L, Zhu S Y, Qian K, Zhang Y F, Bao D L, Li L F, Wang Y Q, Liu Z L, Sun J T, Lei T, Liu C, Wang J O, Ibrahim K, Leonard D N, Zhou W, Guo H M, Wang Y L, Du S X, Pantelides S T and Gao H J 2017 Nat. Mater. 16 717
[4] Dong L, Wang A, Li E, Wang Q, Li G, Huan Q and Gao H J 2019 Chin. Phys. Lett. 36 028102
[5] Meng L, Wang Y L, Zhang L Z, Du S X and Gao H J 2015 Chin. Phys. B 24 086803
[6] Huang L, Li G, Zhang Y Y, Bao L H, Huan Q, Lin X, Wang Y L, Guo H M, Shen C M, Du S X and Gao H J 2018 Acta Phys. Sin. 67 126801 (in Chinese)
[7] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[8] Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano 11 1689
[9] Terrones H, Lopez-Urias F and Terrones M 2013 Sci. Rep. 3 1549
[10] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[11] Reshak A H and Auluck S 2003 Phys. Rev. B 68 245113
[12] Hildebr, B, Jaouen T, Mottas M L, Monney G, Barreteau C, Giannini E, Bowler D R and Aebi P 2018 Phys. Rev. Lett. 120 136404
[13] Chen P, Pai W W, Chan Y H, Takayama A, Xu C Z, Karn A, Hasegawa S, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2017 Nat. Commun. 8 516
[14] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[15] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[16] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[17] Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A and Shen Z X 2013 Nat. Nanotechnol. 9 111
[18] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Manh-Huong P and Batzill M 2018 Nat. Nanotechnol. 13 289
[19] Shao Y, Song S, Wu X, Qi J, Lu H, Liu C, Zhu S, Liu Z, Wang J, Shi D, Du S, Wang Y and Gao H J 2017 Appl. Phys. Lett. 111 113107
[20] Xi X, Zhao L, Wang Z, Berger H, Forro L, Shan J and Mak K F 2015 Nat. Nanotechnol. 10 765
[21] Guster B, Robles R, Pruneda M, Canadell E and Ordejon P 2019 2d Materials 6 015027
[22] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G and Marzari N 2018 Nat. Nanotechnol. 13 246
[1] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[2] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
[3] An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing
Qing Hu(胡庆), Boyi Dong(董博义), Lun Wang(王伦), Enming Huang(黄恩铭), Hao Tong(童浩), Yuhui He(何毓辉), Ming Xu(徐明), Xiangshui Miao(缪向水). Chin. Phys. B, 2020, 29(7): 070701.
[4] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[5] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[6] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[7] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[8] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[9] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[10] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[11] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[12] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[13] Enhanced magneto-electric effect in manganite tricolor superlattice with artificially broken symmetry
Huanyu Pei(裴环宇), Shujin Guo(郭蜀晋), Hong Yan(闫虹), Changle Chen(陈长乐), Bingcheng Luo(罗炳成), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(9): 097701.
[14] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[15] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
No Suggested Reading articles found!