Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056301    DOI: 10.1088/1674-1056/28/5/056301
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)

Yi-Meng Wang(王艺朦)1, Jian-Feng Zhang(张建丰)1, Cheng-He Li(李承贺)1, Xiao-Li Ma(马肖莉)2, Jian-Ting Ji(籍建葶)2, Feng Jin(金峰)1, He-Chang Lei(雷和畅)1, Kai Liu(刘凯)1, Wei-Lu Zhang(张玮璐)3, Qing-Ming Zhang(张清明)2,4
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan;
4 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  

We report a comprehensive Raman scattering study on layered MPS3 (M=Mn, Fe, Ni), a two-dimensional magnetic compound with weak van der Waals interlayer coupling. The observed Raman phonon modes have been well assigned by the combination of first-principles calculations and the polarization-resolved spectra. Careful symmetry analysis on the angle-dependent spectra demonstrates that the crystal symmetry is strictly described by C2h but can be simplified to D3d with good accuracy. Interestingly, the three compounds share exactly the same lattice structure but show distinct magnetic structures. This provides us with a unique opportunity to study the effect of different magnetic orders on lattice dynamics in MPS3. Our results reveal that the in-plane Néel antiferromagnetic (AF) order in MnPS3 favors a spin-phonon coupling compared to the in-plane zig-zag AF in NiPS3 and FePS3. We have discussed the mechanism in terms of the folding of magnetic Brillouin zones. Our results provide insights into the relation between lattice dynamics and magnetism in the layered MPX3 (M=transition metal, X=S, Se) family and shed light on the magnetism of monolayer MPX3 materials.

Keywords:  Raman scattering      two-dimensional magnetic van der Waals materials      lattice dynamics      magnetism  
Received:  12 February 2019      Revised:  16 March 2019      Published:  05 May 2019
PACS:  63.20.-e (Phonons in crystal lattices)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  75.75.-c (Magnetic properties of nanostructures)  
  78.30.-j (Infrared and Raman spectra)  
Fund: 

Project supported by the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300504 and 2017YFA0302904), the National Natural Science Foundation of China (Grant Nos. 11474357 and 11774419), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 14XNLQ03).

Corresponding Authors:  Qing-Ming Zhang     E-mail:  qmzhang@ruc.edu.cn

Cite this article: 

Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明) Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni) 2019 Chin. Phys. B 28 056301

[1] Huang B, Clark G, Moratalla E N, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Herrero P J and Xu X D 2017 Nature 546 270
[2] Wang H, Fan F, Zhu S and Wu H 2016 Europhys. Lett. 114 47001
[3] Lado J L and Fernández-Rossier J 2017 2D Mater. 4 035002
[4] McGuire M A 2017 Crystals 7 121
[5] Zhong D, Seyler K L, Xia Y, Lin P, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Wang Y, Xiao D, Fu C K M and Xu X D 2017 Sci. Adv. 3 e1603113
[6] Bernasconi M, Marra G L, Benedek G, Miglio L, Jouanne M, Julien C, Scagliotti M and Balkanski M 1988 Phys. Rev. B 38 12089
[7] Dresselhaus M S 1986 Intercalation in Layered Materials (New York: Plenum) p. 93
[8] Chittari B, Park Y, Lee D, Han M, MacDonald A H, Wang E H and Jung J 2016 Phys. Rev. B 94 184428
[9] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q and Kloc C 2016 ACS Nano 10 1738
[10] Flem G L, Brec R, Ouvrard G, Louisy A and Segransen P 1982 J. Phys. Chem. Solids 43 455
[11] Joy P A and Vasudevan S 1992 Phys. Rev. B 46 5425
[12] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. 110 3738
[13] Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Hoh T W and Park J G 2016 Sci. Rep. 6 20904
[14] Lee J U, Lee S, Ryoo J, Kang S, Kim T, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[15] Murayama C, Okabe M, Urushihara D, Asaka T, Fukuda K, Isobe M, Yamamoto K and Matsushita Y 2016 J. Appl. Phys. 120 142114
[16] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
[17] Dziaugys A, Banys J and Vysochanskii Y 2013 Ferroelectrics 447 1
[18] Evans J S O, O'Hare D, Clement R, Leaustic A and Thuéry P 1995 Adv. Mater. 7 735
[19] Frindt R F, Yang D and Westreich P 2005 J. Mater. Res. 20 1107
[20] Makimura C, Sekine T, Tanokura Y and Kurosawa K 1993 J. Phys. Condens. Matter 5 623
[21] Piryatinskaya V G, Kachur I S, Slavin V V, Yeremenko A V and Vysochanskii Y M 2012 Low Temp. Phys. 38 870
[22] Wildes A R, Harris M J and Godfrey K W 1998 J. Magn. Magn. Mater. 177-181 143
[23] Wildes A R, Kennedy S J and Hicks T J 1994 J. Phys. Condens. Matter 6 L335
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[27] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[31] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[32] Zhang A M, Liu K, He J B, Wang D M, Chen G F, Norm, B and Zhang Q M 2012 Phys. Rev. B 86 134502
[33] Kokalj A 2003 Comp. Mater. Sci. 28 155
[1] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[2] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[3] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[4] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[5] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[6] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[7] Microstructure and ferromagnetism ofheavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[8] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[9] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[10] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[11] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[12] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[13] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
[14] Electronic and magnetic properties of CrI3 nanoribbons and nanotubes
Ji-Zhang Wang(王吉章), Jian-Qi Huang(黄建啟), Ya-Ning Wang(王雅宁), Teng Yang(杨腾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 077301.
[15] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
No Suggested Reading articles found!