Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 043101    DOI: 10.1088/1674-1056/28/4/043101

Low-lying electronic states of aluminum monoiodide

Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰)
Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy(Jilin University), Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China

High-level ab initio calculations of aluminum monoiodide (AlI) molecule are performed by utilizing the multi-reference configuration interaction plus Davidson correction (MRCI+Q) method. The core-valence correlation (CV) and spin-orbit coupling (SOC) effect are considered. The adiabatic potential energy curves (PECs) of a total of 13 Λ-S states and 24Ω states are computed. The spectroscopic constants of bound states are determined, which are in accordance with the results of the available experimental and theoretical studies. The interactions between the Λ-S states are analyzed with the aid of the spin-orbit matrix elements. Finally, the transition properties including transition dipole moment (TDM), Frank-Condon factors (FCF) and radiative lifetime are obtained based on the computed PEC. Our study sheds light on the electronic structure and spectroscopy of low-lying electronic states of the AlI molecule.

Keywords:  AlI molecule      potential energy curves (PECs)      core-valence correlation      spin-orbit coupling      multi-reference configuration interaction (MRCI)  
Received:  24 October 2018      Revised:  24 January 2019      Published:  05 April 2019
PACS:  31.15.A- (Ab initio calculations)  
  33.70.Ca (Oscillator and band strengths, lifetimes, transition moments, and Franck-Condon factors)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 11874179, 11574114, and 11874177), and the Natural Science Foundation of Jilin Province, China (Grant Nos. 20180101289JC).

Corresponding Authors:  Hai-Feng Xu, Bing Yan     E-mail:;

Cite this article: 

Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰) Low-lying electronic states of aluminum monoiodide 2019 Chin. Phys. B 28 043101

[1] Cernicharo J and Guélin M 1987 Astron. Astrophys. 183 L10
[2] Shuman E S, Barry J F and Demille D 2010 Nature 467 820
[3] Rosa M D D 2004 Eur. Phys. J. D. 31 395
[4] Yang R, Tang B and Gao T 2016 Chin. Phys. B 25 043101
[5] Liu X T, Shi D D, Shan S M, Yan P Y, Xu H F and Yan B 2016 J. Phys. Chem. A 120 8786
[6] Wells N and Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018
[7] Wyse F C and Gordy W 1972 J. Chem. Phys. 56 2130
[8] Martin E and Barrow R F 1978 Phys. Scr. 17 501
[9] Mahieu E, Dubois I and Bredohl H 1990 J. Mol. Spectrosc. 143 359
[10] Hargittai M and Varga 2010 J. Phys. Chem. 111 6
[11] Hamade Y, Taher F and Monteil Y 2009 Int. J. Quantum Chem. 110 1030
[12] Luo W, Li R, Gai Z Q, Ai R B, Zhang H M, Zhang X M and Yan B 2016 Chin. Phys. B 25 073101
[13] Zhao S T, Liang G Y, Li R, Li Q N, Zhang Z G and Yan B 2017 Acta Phys. Sin. 66 063103 (in Chinese)
[14] Liu X J, Miao F J, Li R, Zhang C H, Li Q N and Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese)
[15] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M 2012 Wires. Comput. Mol. Sci. 2 242
[16] Peterson K A and Yousaf K E 2010 J. Chem. Phys. 133 174116
[17] Peterson K A and Dunning T H J 2002 J. Chem. Phys. 117 10548
[18] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[19] Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342
[20] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[21] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[22] Berning A, Schweizer M, Werner H J, Knowles P J and Palmieri P 2000 Mol. Phys. 98 1823
[23] Le Roy R J 2017 J. Quantum Spectrosc. Radiat. Transfer 186 167
[24] Khalil H, Quéré F L, Brites V and Léonard C 2012 J. Mol. Spectrosc. 27 1
[25] Martin W C and Zalubas R 1979 J. Phys. Chem. Ref. Data 8 817
[26] Luc-Koenig E, Morillon C and Vergés J 1975 Phys. Scr. 12 199
[27] Peláez R J, Blondel C, Delsart C and Drag C 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125001
[1] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[2] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[3] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
[6] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[7] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[8] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[9] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[10] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[11] Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华). Chin. Phys. B, 2019, 28(5): 056701.
[12] Particle-hole fluctuations and possible superconductivity in doped α-RuCl3
Bin-Bin Wang(王斌斌), Wei Wang(王巍), Shun-Li Yu(于顺利), Jian-Xin Li(李建新). Chin. Phys. B, 2019, 28(5): 057402.
[13] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
[14] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
[15] Configuration interaction calculations on the spectroscopic and transition properties of magnesium chloride
Dong-lan Wu(伍冬兰), Cheng-quan Lin(林成泉), Yu-feng Wen(温玉锋), An-dong Xie(谢安东), Bing Yan(闫冰). Chin. Phys. B, 2018, 27(8): 083101.
No Suggested Reading articles found!