Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 043102    DOI: 10.1088/1674-1056/28/4/043102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Explicitly correlated configuration interaction investigation on low-lying states of SiO+ and SiO

Rui Li(李瑞)1,2, Gui-Ying Liang(梁桂颖)2, Xiao-He Lin(林晓贺)2, Yu-Hao Zhu(朱宇豪)2, Shu-Tao Zhao(赵书涛)3, Yong Wu(吴勇)2,4
1 Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3 School of Physics and Electronic Science, Fuyang Normal University, Fuyang 236037, China;
4 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
Abstract  

SiO+ and SiO, which play vital roles in astrophysics and astrochemistry, have long attracted considerable attention. However, accurate information about excited states of SiO+ is still limited. In this work, the structures of 14 Λ-S states and 30Ω states of SiO+ are computed with explicitly correlated configuration interaction method. On the basis of the calculated potential energy curves of those Λ-S states and Ω states, the spectroscopic constants of bound states are evaluated, which are in good agreement with the latest experimental results. The predissociation mechanism of B2Σ+ state is illuminated with the aid of spin-orbit coupling matrix elements. On the basis of the calculated potential energy curves and transition dipole moments, the radiative lifetime for each of low-lying vibrational states B2Σ+ and A2Π is estimated. The laser cooling scheme of SiO+ is proposed by employing B2Σ+-X2Σ+ transition. Finally, the vertical ionization energy values from SiO (X1Σ+) to ionic states:SiO+, X2Σ+, B2Σ+, and A2Π are calculated, which agree well with experimental measurements.

Keywords:  SiO+      explicitly correlated configuration interaction      transition dipole moment      ionization energy  
Received:  12 December 2018      Revised:  29 January 2019      Accepted manuscript online: 
PACS:  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), the Science Challenge Project (Grant No. TZ2016005), the China Postdoctoral Science Foundation (Grant No. 2018M631404), the National Natural Science Foundation of China (Grant No. 11404180), the University Nursing Program for Yong Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095), the Natural Science Research Project of Education Department of Anhui Province, China (Grant No. KJ2018A0342), and the Key Program of Excellent Youth Talent Project of Fuyang Normal University, China (Grant No. rcxm201801).

Corresponding Authors:  Rui Li, Yong Wu     E-mail:  lirei01@163.com;wu_yong@iapcm.ac.cn

Cite this article: 

Rui Li(李瑞), Gui-Ying Liang(梁桂颖), Xiao-He Lin(林晓贺), Yu-Hao Zhu(朱宇豪), Shu-Tao Zhao(赵书涛), Yong Wu(吴勇) Explicitly correlated configuration interaction investigation on low-lying states of SiO+ and SiO 2019 Chin. Phys. B 28 043102

[1] Scalo J M and Slavsky D B 1980 Astrophys. J. 239 L73
[2] Clegg R E S, IJzendoorn V, J L and Allamandola L J 1983 Mot. Not. R. Astr. Soc. 203 125
[3] Turner J L and Dalgarno A 1977 Astrophys. J. 213 386
[4] Millar T J 1980 Astrophys. Space Sci. 72 509
[5] Prasad S S and Huntress W T 1980 Astrophys. J. Suppl. S. 43 1
[6] Herbst E, Millar T J, Wlodek S and Bohme D K 1990 Astrophys. J. 352 123
[7] Le P Q, Dong F and Hirota K 2011 Quantum Inform. Process. 10 63
[8] Zhang Y, Lu K, Gao Y and Wang M 2013 Quantum Inform. Process. 12 2833
[9] Bauschlicher C W 2016 Chem. Phys. Lett. 658 76
[10] Hartquist T W, Dalgarno A and Oppenheimer M 1980 Astrophys. J. 236 182
[11] Neufeld D A and Dalgarno A 1989 Astrophys. J. 344 251
[12] Stollenwerk P R, Odom B C, Kokkin D L and Steimle T 2017 J. Mol. Spectrosc. 332 26
[13] Shuman E S, Barry J F and DeMille D 2010 Nature 467 820
[14] Yzombard P, Hamamda M, Gerber S, Doser M and Comparat D 2015 Phys. Rev. Lett. 114 213001
[15] Hamamda M, Pillet P, Lignier H and Comparat D 2015 J. Phys. B: At. Mol. Opt. Phys. 48 182001
[16] Collaboration T A, Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O'Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C and West A D 2014 Science 343 269
[17] Cameron R, Scholl T J, Zhang L, Holt R A and Rosner S D 1995 J. Mol. Spectrosc. 169 364
[18] Scholl T J, Cameron R, Rosner S D and Holt R A 1995 Phys. Rev. A 51 2014
[19] Scholl T J, Cameron R, Rosner S D and Holt R A 1995 Can. J. Phys. 73 101
[20] Rosner S D, Cameron R, Scholl T J and Holt R A 1998 J. Mol. Spectrosc. 189 83
[21] Zhang L, Cameron R, Holt R A, Scholl T J and Rosner S D 1993 Astrophys. J. 418 307
[22] Colbourn E A, Dyke J M, Lee E P F, Morris A and Trickle I R 1978 Mol. Phys. 35 873
[23] Werner H J, Rosmus P and Grimm M 1982 Chem. Phys. 73 169
[24] Cai Z L and François J P 1999 J. Mol. Spectrosc. 197 12
[25] Nguyen J H V and Odom B 2011 Phys. Rev. A 83 053404
[26] Chattopadhyaya S, Chattopadhyay A and Das K K 2003 J. Mol. Struc. Theochem. 639 177
[27] Werner H J, Knowles P J, Knizia G, et al. 2012 MOLPRO: a Package of ab initio Programs
[28] Peterson K A, Adler T B and Werner H J 2008 J. Chem. Phys. 128 084102
[29] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[30] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[31] Shiozaki T, Knizia G and Werner H J 2011 J. Chem. Phys. 134 034113
[32] Balasubramanian K 1990 Chem. Rev. 90 93
[33] Alekseyev A B, Liebermann H P, Lingott R M, Bludský O, Buenker R J 1998 J. Chem. Phys. 108 7695
[34] Berning A, Schweizer M, Werner H J, Knowles P J and Palmieri P 2000 Mol. Phys. 98 1823
[35] Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (University of Waterloo, Chemical Physics Research Report CP-655)
[36] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules (New York: Van Nostrand-Reinhold)
[37] Ghosh S N, Van der Linde J and Verma R D 1979 J. Mol. Spectrosc. 75 169
[38] Nagaraj S and Verma R D 1968 Can. J. Phys. 46 1597
[39] Kang S Y, Kuang F G, Jiang G, Li D B, Luo Y, Hui P F, Wang L P, Hu W Q and Shao Y C 2017 J. Phys. B: At. Mol. Opt. Phys. 50 105103
[40] Wan M, Di Y, Jin C, Wang F, Yang Y, You Y and Shao J 2016 J. Chem. Phys. 145 024309
[41] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y and Ye J 2013 Phys. Rev. Lett. 110 143001
[42] Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 Nat. Phys. 13 1173
[43] Sun E P, Ren T Q, Liu Q X, Quan M, Zhang J J, Xu H F and Yan B 2016 Chin. Phys. Lett. 33 023101
[44] Ibraguimova L B and Minaev B F 2016 Opt. Spectrosc. 120 345
[45] Cao J J, Gong T, Li Z H, Ji Z H, Zhao Y T, Xiao L T and Jia S T 2018 Chin. Phys. Lett. 35 103301
[46] Wu D L, Tan B, Zeng X F, Wan H J, Xie A D, Yan B and Ding D J 2016 Chin. Phys. Lett. 33 63102
[47] Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standard)
[48] Cameron R, Scholl T J, Zhang L, Holt R A and Rosner S D 1995 J. Mol. Spectrosc. 169 352
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Molecule opacity study on low-lying states of CS
Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(10): 103101.
[3] Molecular opacities of low-lying states of oxygen molecule
Gui-Ying Liang(梁桂颖), Yi-Geng Peng(彭裔耕), Rui Li(李瑞), Yong Wu(吴勇), Jian-Guo Wang(王建国). Chin. Phys. B, 2020, 29(2): 023101.
[4] Molecule opacities of X2Σ+, A2Π, and B2Σ+ states of CS+
Xiao-He Lin(林晓贺), Gui-Ying Liang(梁桂颖), Jian-Guo Wang(王建国), Yi-Geng Peng(彭裔耕), Bin Shao(邵彬), Rui Li(李瑞), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(5): 053101.
[5] How to characterize capacitance of organic optoelectronic devices accurately
Hao-Miao Yu(于浩淼), Yun He(何鋆). Chin. Phys. B, 2018, 27(6): 067202.
[6] Theoretical study of spin-forbidden cooling transitions of indium hydride using ab initio methods
Yun-Guang Zhang(张云光), Hua Zhang(张华), Ge Dou(窦戈). Chin. Phys. B, 2017, 26(9): 093101.
[7] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[8] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[9] Spectroscopic properties and radiative lifetimes of SiTe:A high-level multireference configuration interaction investigation
Li Rui (李瑞), Zhang Xiao-Mei (张晓美), Jin Ming-Xing (金明星), Xu Hai-Feng (徐海峰), Yan Bing (闫冰). Chin. Phys. B, 2014, 23(5): 053101.
[10] Theoretical study of γ-aminobutyric acid conformers: Intramolecular interactions and ionization energies
Wang Ke-Dong (王克栋), Wang Mei-Ting (王美婷), Meng Ju (孟举). Chin. Phys. B, 2014, 23(10): 103101.
[11] Ionization energies and term energies of the ground states 1s22s of lithium-like systems
Li Jin-Ying (李金英), Wang Zhi-Wen (王治文). Chin. Phys. B, 2014, 23(1): 013201.
[12] Multireference calculations on low-lying states and X3Πu-3Πg absorption spectra of indium dimer
Zhou Ling-Song (周凌松), Yan Bing (闫冰), Jin Ming-Xing (金明星). Chin. Phys. B, 2013, 22(4): 043102.
[13] Orbital responses to methyl sites in CnH2n+2 (n=1–6)
Yang Ze-Jin(杨则金), Cheng Xin-Lu(程新路), Zhu Zheng-He(朱正和), and Yang Xiang-Dong(杨向东) . Chin. Phys. B, 2012, 21(2): 023401.
[14] Synchrotron radiation VUV double photoionization of some small molecules
Zhao Yu-Jie(赵玉杰), Shan Xiao-Bin(单晓斌), Sheng Liu-Si(盛六四), Wang Zhen-Ya(王振亚), Zhang Jie(张杰), and Yu Chun-Ri(余春日) . Chin. Phys. B, 2011, 20(4): 043201.
[15] Spin--orbit ab initio curves of 80Se2+ ion and theassignment of photoelectron spectra of 80Se2 molecule
Yan Bing(闫冰), Pan Shou-Fu(潘守甫), and Guo Qing-Qun(郭庆群). Chin. Phys. B, 2008, 17(9): 3318-3321.
No Suggested Reading articles found!