Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 026102    DOI: 10.1088/1674-1056/28/2/026102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials

Wei Jia(贾微), Pei-Wen Ren(任佩雯), Yu-Chen Tian(田雨宸), Chun-Zhen Fan(范春珍)
School of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract  A graphene-based metamaterial for THz plasmon induced transparency (PIT) is presented and numerically studied in this paper, which consists of two horizontal graphene strips attached to a continuous vertical wire separately. The calculated surface current distributions demonstrate that the distinct PIT window results from the near-field coupling of two bright modes. To explore the physical mechanism of PIT effect, we employ the coupled Lorentz oscillator model. The transmission spectra obtained with this model fits well with the simulation results. The performance of the PIT system can be controlled through the geometry parameters of graphene strips. Moreover, the transparency window can be dynamically tuned by varying the Fermi energy and the carrier mobility of the graphene strips. The slow light effect is also explored in our proposed structure and it can achieve 1.25 ps when Fermi energy is 1.3 eV. Finally, the position of the transmission window with the variation of the nearby medium refractive index is examined. Such a proposed graphene-based PIT system may have great potential applications in photonic devices.
Keywords:  plasmon-induced transparency      graphene      tunable  
Received:  09 September 2018      Revised:  09 November 2018      Accepted manuscript online: 
PACS:  61.48.Gh (Structure of graphene)  
  42.79.Hp (Optical processors, correlators, and modulators)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant Nos. 162102210164 and 1721023100107) and the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002).
Corresponding Authors:  Chun-Zhen Fan     E-mail:  chunzhen@zzu.edu.cn

Cite this article: 

Wei Jia(贾微), Pei-Wen Ren(任佩雯), Yu-Chen Tian(田雨宸), Chun-Zhen Fan(范春珍) Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials 2019 Chin. Phys. B 28 026102

[1] Harris S E, Field J and Imamoğlu A 2015 Plasmonics 10 1115
[2] Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[3] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[4] He J N, Wang J Q, Ding P, Fan C Z, Arnaut L R and Liang E J 2015 Plasmonics 10 1115
[5] Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P and Stefan A 2009 Nano Lett. 9 1663
[6] Tian Y C, Jia W, Ren P W and Fan C Z 2018 Chin. Phys. B 27 124205
[7] Luk'yanchuk B, Zheludev N I, Maier S A, Halas H J, Nordlander P, Giessen H and Chong C T 2017 Opt. Eng. 56 107106
[8] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönichsen C and Giessen H P 2010 Nano Lett. 10 1103
[9] Yu Z, Che H, Liu J J, Jing X F, Li X J and Hong Z 2017 Chin. Phys. B 26 077804
[10] Zhang Y, Li J, Li H and Yuan P 2013 Opt. Laser Technol. 49 202
[11] Novikova I, Walsworth R L and Xiao Y 2012 Laser Photon. Rev. 6 333
[12] Chen J X, Wang P, Chen C C, Lu Y H, Ming H and Zhan Q W 2011 Opt. Express 19 5970
[13] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
[14] Fu G L, Zhai X, Li H J, Xia S X and Wang L L 2016 Plasmonics 11 1597
[15] He X J, Yao Y, Yang X Y, Lu G J, Yang W L, Yang Y Q, Wu F M, Yu Z G and Jiang J X 2018 Opt. Commun. 410 206
[16] Tian Y C, Ding P and Fan C Z 2017 Opt. Eng. 56 107106
[17] Shang X J, Zhai X, Li X F, Wang L L, Wang B X and Liu G D 2017 Opt. Express 25 10484
[19] Zhu Y, Hu X Y, Yang H and Gong Q H 2014 Sci. Rep. 4 3752
[20] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2013 Opt. Express 21 28438
[31] Nikitin A Y, Guinea F and Martin-Moreno L 2015 Opt. Mater. Express 5 1962
[21] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[22] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[23] Li H J, Wang L L, Liu J Q, Huang Z R, Sun B and Zhai X 2013 Appl. Phys. Lett. 103 211104
[24] Luo X, Qiu T, Lu W, Ni Z 2013 Mater. Sci. Eng. R 74 351
[25] Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L and Xing H G 2012 Nat. Commun. 3 780
[26] Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206
[27] Fei Z, Sn A, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F and Basov D N 2012 Nature 487 82
[28] Koppens F H L, Chang D E and Garcia de Abajo F J 2011 Nano Lett. 11 3370
[29] Sun C, Si J N, Dong Z W and Deng X X 2016 Opt. Express 24 11466
[30] Shi X, Han D Z, Dai Y Y, Yu Z F, Sun Y, Chen H, Liu X H and Zi J 2013 Opt. Express 21 28438
[31] Nikitin A Y, Guinea F and Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119
[32] Ke S, Wang B, Huang H, Long H, Wang K and Lu P 2015 Opt. Express 23 8888
[33] Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410
[34] Jiang J X, Zhang Q F, Ma Q X, Yan S T, Wu F M and He X J 2015 Opt. Mater. Express 5 1962
[35] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[36] Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L and Ruoff R 2013 Science 342 720
[37] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[38] Niu Y, Wang J, Hu Z and Zhang F 2018 Opt. Commun. 416 77
[39] Cheng H, Chen S, Yu P, Duan X, Xie B and Tian J 2013 Appl. Phys. Lett. 103 203112
[40] Artar A, Yanik A A and Altug H 2011 Nano Lett. 11 1685
[41] Shang X J, Zhai X, Li X F, Wang L L, Wang B X and Liu G D 2016 Plasmonics 11 419
[42] Garcia de Abajo J F 2014 ACS Photonics 1 135
[43] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
[44] Huang S Y, Song C Y, Zhang G W and Yan H G 2016 Nanophotonics 6 1191
[45] Cao W, Singh R, Zhang C H, Han J G, Tonouchi M and Zhang W L 2013 Appl. Phys. Lett. 103 101106
[46] Zhao Z Y, Song Z Q, Shi W Z and Peng W 2016 Opt. Mater. Express 6 2190
[47] Yu D M, Zhai X, Wang L L, Lin Q, Li H J, Xia S X and Shang X J 2016 Plasmonics 11 1151
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
No Suggested Reading articles found!