Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 026102    DOI: 10.1088/1674-1056/28/2/026102

Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials

Wei Jia(贾微), Pei-Wen Ren(任佩雯), Yu-Chen Tian(田雨宸), Chun-Zhen Fan(范春珍)
School of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract  A graphene-based metamaterial for THz plasmon induced transparency (PIT) is presented and numerically studied in this paper, which consists of two horizontal graphene strips attached to a continuous vertical wire separately. The calculated surface current distributions demonstrate that the distinct PIT window results from the near-field coupling of two bright modes. To explore the physical mechanism of PIT effect, we employ the coupled Lorentz oscillator model. The transmission spectra obtained with this model fits well with the simulation results. The performance of the PIT system can be controlled through the geometry parameters of graphene strips. Moreover, the transparency window can be dynamically tuned by varying the Fermi energy and the carrier mobility of the graphene strips. The slow light effect is also explored in our proposed structure and it can achieve 1.25 ps when Fermi energy is 1.3 eV. Finally, the position of the transmission window with the variation of the nearby medium refractive index is examined. Such a proposed graphene-based PIT system may have great potential applications in photonic devices.
Keywords:  plasmon-induced transparency      graphene      tunable  
Received:  09 September 2018      Revised:  09 November 2018      Published:  05 February 2019
PACS:  61.48.Gh (Structure of graphene)  
  42.79.Hp (Optical processors, correlators, and modulators)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant Nos. 162102210164 and 1721023100107) and the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002).
Corresponding Authors:  Chun-Zhen Fan     E-mail:

Cite this article: 

Wei Jia(贾微), Pei-Wen Ren(任佩雯), Yu-Chen Tian(田雨宸), Chun-Zhen Fan(范春珍) Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials 2019 Chin. Phys. B 28 026102

[1] Harris S E, Field J and Imamoğlu A 2015 Plasmonics 10 1115
[2] Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[3] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[4] He J N, Wang J Q, Ding P, Fan C Z, Arnaut L R and Liang E J 2015 Plasmonics 10 1115
[5] Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P and Stefan A 2009 Nano Lett. 9 1663
[6] Tian Y C, Jia W, Ren P W and Fan C Z 2018 Chin. Phys. B 27 124205
[7] Luk'yanchuk B, Zheludev N I, Maier S A, Halas H J, Nordlander P, Giessen H and Chong C T 2017 Opt. Eng. 56 107106
[8] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönichsen C and Giessen H P 2010 Nano Lett. 10 1103
[9] Yu Z, Che H, Liu J J, Jing X F, Li X J and Hong Z 2017 Chin. Phys. B 26 077804
[10] Zhang Y, Li J, Li H and Yuan P 2013 Opt. Laser Technol. 49 202
[11] Novikova I, Walsworth R L and Xiao Y 2012 Laser Photon. Rev. 6 333
[12] Chen J X, Wang P, Chen C C, Lu Y H, Ming H and Zhan Q W 2011 Opt. Express 19 5970
[13] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
[14] Fu G L, Zhai X, Li H J, Xia S X and Wang L L 2016 Plasmonics 11 1597
[15] He X J, Yao Y, Yang X Y, Lu G J, Yang W L, Yang Y Q, Wu F M, Yu Z G and Jiang J X 2018 Opt. Commun. 410 206
[16] Tian Y C, Ding P and Fan C Z 2017 Opt. Eng. 56 107106
[17] Shang X J, Zhai X, Li X F, Wang L L, Wang B X and Liu G D 2017 Opt. Express 25 10484
[19] Zhu Y, Hu X Y, Yang H and Gong Q H 2014 Sci. Rep. 4 3752
[20] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2013 Opt. Express 21 28438
[31] Nikitin A Y, Guinea F and Martin-Moreno L 2015 Opt. Mater. Express 5 1962
[21] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[22] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[23] Li H J, Wang L L, Liu J Q, Huang Z R, Sun B and Zhai X 2013 Appl. Phys. Lett. 103 211104
[24] Luo X, Qiu T, Lu W, Ni Z 2013 Mater. Sci. Eng. R 74 351
[25] Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L and Xing H G 2012 Nat. Commun. 3 780
[26] Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206
[27] Fei Z, Sn A, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F and Basov D N 2012 Nature 487 82
[28] Koppens F H L, Chang D E and Garcia de Abajo F J 2011 Nano Lett. 11 3370
[29] Sun C, Si J N, Dong Z W and Deng X X 2016 Opt. Express 24 11466
[30] Shi X, Han D Z, Dai Y Y, Yu Z F, Sun Y, Chen H, Liu X H and Zi J 2013 Opt. Express 21 28438
[31] Nikitin A Y, Guinea F and Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119
[32] Ke S, Wang B, Huang H, Long H, Wang K and Lu P 2015 Opt. Express 23 8888
[33] Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410
[34] Jiang J X, Zhang Q F, Ma Q X, Yan S T, Wu F M and He X J 2015 Opt. Mater. Express 5 1962
[35] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[36] Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L and Ruoff R 2013 Science 342 720
[37] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[38] Niu Y, Wang J, Hu Z and Zhang F 2018 Opt. Commun. 416 77
[39] Cheng H, Chen S, Yu P, Duan X, Xie B and Tian J 2013 Appl. Phys. Lett. 103 203112
[40] Artar A, Yanik A A and Altug H 2011 Nano Lett. 11 1685
[41] Shang X J, Zhai X, Li X F, Wang L L, Wang B X and Liu G D 2016 Plasmonics 11 419
[42] Garcia de Abajo J F 2014 ACS Photonics 1 135
[43] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
[44] Huang S Y, Song C Y, Zhang G W and Yan H G 2016 Nanophotonics 6 1191
[45] Cao W, Singh R, Zhang C H, Han J G, Tonouchi M and Zhang W L 2013 Appl. Phys. Lett. 103 101106
[46] Zhao Z Y, Song Z Q, Shi W Z and Peng W 2016 Opt. Mater. Express 6 2190
[47] Yu D M, Zhai X, Wang L L, Lin Q, Li H J, Xia S X and Shang X J 2016 Plasmonics 11 1151
[1] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[2] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[3] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[4] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[5] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[6] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[9] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[10] Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating
Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2020, 29(8): 084208.
[11] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[12] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[13] 575-fs passively mode-locked Yb:CaF2 ceramic laser
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧). Chin. Phys. B, 2020, 29(7): 074205.
[14] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[15] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
No Suggested Reading articles found!