Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118801    DOI: 10.1088/1674-1056/27/11/118801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High capacity sodium-rich layered oxide cathode for sodium-ion batteries

Gen-Cai Guo(郭根材), Changhao Wang(王长昊), Bang-Ming Ming(明帮铭), Si-Wei Luo(罗斯玮), Heng Su(苏恒), Bo-Ya Wang(王博亚), Ming Zhang(张铭), Hai-Jun Yu(尉海军), Ru-Zhi Wang(王如志)
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  

Sodium-ion batteries have attracted significant recent attention currently considering the limited available lithium resource. However, the energy density of sodium-ion batteries is still insufficient compared to lithium-ion batteries, mainly because of the unavailability of high-energy cathode materials. In this work, a novel sodium-rich layered oxide material (Na2MnO3) is reported with a dynamical stability similar to that of the Li2MnO3 structure and a high capacity of 269.69 mA·h·g1, based on first-principles calculations. Sodium ion de-intercalation and anionic reaction processes are systematically investigated, in association with sodium ions migration phenomenon and structure stability during cycling of NaxMnO3 (1 ≤ x ≤ 2). In addition, the charge compensation during the initial charging process is mainly contributed by oxygen, where the small differences of the energy barriers of the paths 2c→4h, 4h→2c, 4h→4h, 2c→2b, and 4h→2b indicate the reversible sodium ion occupancy in transitional metal and sodium layers. Moreover, the slow decrease of the elastic constants is a clear indication of the high cycle stability. These results provide a framework to exploit the potential of sodium-rich layered oxide, which may facilitate the development of high-performance electrode materials for sodium-ion batteries.

Keywords:  sodium-rich layered oxides      first-principles calculations      sodium-ion diffusion  
Received:  29 July 2018      Revised:  04 September 2018      Accepted manuscript online: 
PACS:  88.80.ff (Batteries)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.Dg (Alkali and alkaline earth metals)  
Fund: 

Project suppoted by the National Natural Science Foundation of China (Grant Nos. 11774017, 51761135129, and 51472010) and Beijing Municipal High Level Innovative Team Building Program, China (Grant No. IDHT20170502).

Corresponding Authors:  Hai-Jun Yu, Hai-Jun Yu     E-mail:  hj-yu@bjut.edu.cn;wrz@bjut.edu.cn

Cite this article: 

Gen-Cai Guo(郭根材), Changhao Wang(王长昊), Bang-Ming Ming(明帮铭), Si-Wei Luo(罗斯玮), Heng Su(苏恒), Bo-Ya Wang(王博亚), Ming Zhang(张铭), Hai-Jun Yu(尉海军), Ru-Zhi Wang(王如志) High capacity sodium-rich layered oxide cathode for sodium-ion batteries 2018 Chin. Phys. B 27 118801

[1] Idota Y, Kubota T, Matsufuji A, Maekawa Y and Miyasaka T 1997 Science 276 1395
[2] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T and Honma I 2008 Nano Lett. 8 2277
[3] Oyama N, Tatsuma T, Sato T and Sotomura T 1995 Nature 373 598
[4] Ji L, Rao M, Aloni S, Wang L, Cairns E J and Zhang Y 2011 Energy Environ. Sci. 4 5053
[5] Wang Y and Cao G 2008 Adv. Mater. 20 2251
[6] Hannan M, Lipu M, Hussain A and Mohamed A 2017 Renew. Sust. Energ. Rev. 78 834
[7] Horeh N B, Mousavi S and Shojaosadati S 2016 J. Power Sources 320 257
[8] Ling S G, Guo J, Xiao R J and Chen L Q 2016 Chin. Phys. B 25 018208
[9] Slater M D, Kim D, Lee E and Johnson C S 2013 Adv. Funct. Mater. 23 947
[10] Hao H, Liu Z, Zhao F, Geng Y and Sarkis J 2017 Resour. Policy 51 100
[11] Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero-González J and Rojo T 2012 Energy Environ. Sci. 5 5884
[12] Ellis B L and Nazar L F 2012 Curr. Opin. Solid St. M. 16 168
[13] Pan H, Hu Y S and Chen L 2013 Energy Environ. Sci. 6 2338
[14] Wessells C D, Peddada S V, Huggins R A and Cui Y 2011 Nano Lett. 11 5421
[15] Zheng Y, Zhou T, Zhang C, Mao J, Liu H and Guo Z 2016 Angew. Chem. Int. Ed. 55 3408
[16] Xie F, Zhang L, Su D, Jaroniec M and Qiao S Z 2017 Adv. Mater. 29 1700989
[17] Kim S W, Seo D H, Ma X, Ceder G and Kang K 2012 Adv. Energy Mater. 2 710
[18] Berthelot R, Carlier D and Delmas C 2011 Nat. Mater. 10 74
[19] Assadi M and KatayamaYoshida H 2017 Phys. Chem. Chem. Phys. 19 23425
[20] Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf L V, Yang Z and Liu J 2011 Adv. Mater. 23 3155
[21] Li Y, Feng X, Cui S, Shi Q, Mi L and Chen W 2016 Cryst. Eng. Comm. 18 3136
[22] Ding J J, Zhou Y N, Sun Q and Fu Z W 2012 Electrochem. Commun. 22 85
[23] Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y and Komaba S 2012 Nat. Mater. 11 512
[24] Kee Y, Dimov N, Champet S, Gregory D H and Okada S 2016 Ionics 22 2245
[25] Wang P F, You Y, Yin Y X and Guo Y G 2016 J. Mater. Chem. A 4 17660
[26] Yu H, Guo S, Zhu Y, Ishida M and Zhou H 2014 Chem. Commun. 50 457
[27] Chen H, Hao Q, Zivkovic O, Hautier G, Du L S, Tang Y, Hu Y Y, Ma X, Grey C P and Ceder G 2013 Chem. Mater. 25 2777
[28] Kim D, Lee E, Slater M, Lu W, Rood S and Johnson C S 2012 Electrochem. Commun. 18 66
[29] Mu L Q, Hu Y S and Chen L Q 2015 Chin. Phys. B 24 038202
[30] Li F, Zhu Y E, Sheng J, Yang L, Zhang Y and Zhou Z 2017 J. Mater. Chem. A 5 25276
[31] Yabuuchi N, Takeuchi M, Komaba S, Ichikawa S, Ozaki T and Inamasu T 2016 Chem. Commun. 52 2051
[32] Freire M, Kosova N, Jordy C, Chateigner D, Lebedev O, Maignan A and Pralong V 2016 Nat. Mater. 15 173
[33] McCalla E, Sougrati M T, Rousse G, Berg E J, Abakumov A, Recham N, Ramesha K, Sathiya M, Dominko R and Van Tendeloo G 2015 J. Am. Chem. Soc. 137 4804
[34] McCalla E, Abakumov A M, Saubanére M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novák P and Van Tendeloo G 2015 Science 350 1516
[35] Yu H J, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H S and Ikuhara Y 2013 Angew. Chem. Int. Ed. 52 5969
[36] Yu H J and Zhou H S 2013 J. Phys. Chem. Lett. 4 1268
[37] Johnson C, Kim J, Lefief C, Li N, Vaughey J and Thackeray M 2004 Electrochem. Commun. 6 1085
[38] Zuo Y, Li B, Jiang N, Chu W, Zhang H, Zou R and Xia D 2018 Adv. Mater. 30 1707255
[39] Xiao R, Li H and Chen L 2012 Chem. Mater. 24 4242
[40] Li B, Yan H, Zuo Y and Xia D 2017 Chem. Mater. 29 2811
[41] Zheng L, Wang H, Luo M, Wang G, Wang Z and Ouyang C 2018 Solid State Ionics 320 210
[42] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Liechtenstein A, Anisimov V and Zaanen J 1995 Phys. Rev. B 52 R5467
[45] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[46] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[47] Henkelman G, Arnaldsson A and Jónsson H 2006 Comp. Mater. Sci. 36 354
[48] Yang J H, Song S, Du S, Gao H J and Yakobson B I 2017 J. Phys. Chem. Lett. 8 4594
[49] Aydinol M, Kohan A, Ceder G, Cho K and Joannopoulos J 1997 Phys. Rev. B 56 1354
[50] Okamoto Y 2011 J. Electrochem. Soc. 159 A152
[51] Koyama Y, Tanaka I, Nagao M and Kanno R 2009 J. Power Sources 189 798
[1] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[2] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[3] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[4] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[5] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[6] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[7] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[8] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[9] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[10] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[11] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[12] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[13] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[14] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[15] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
No Suggested Reading articles found!