Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067901    DOI: 10.1088/1674-1056/26/6/067901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Graphene/Mo2C heterostructure directly grown by chemical vapor deposition

Rongxuan Deng(邓荣轩)1,2, Haoran Zhang(张浩然)1,2, Yanhui Zhang(张燕辉)1, Zhiying Chen(陈志蓥)1, Yanping Sui(隋妍萍)1, Xiaoming Ge(葛晓明)1,2, Yijian Liang(梁逸俭)1,2, Shike Hu(胡诗珂)1,2, Guanghui Yu(于广辉)1, Da Jiang(姜达)1
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Graphene-based heterostructure is one of the most attractive topics in physics and material sciences due to its intriguing properties and applications. We report the one-step fabrication of a novel graphene/Mo2C heterostructure by using chemical vapor deposition (CVD). The composition and structure of the heterostructure are characterized through energy-dispersive spectrometer, transmission electron microscope, and Raman spectrum. The growth rule analysis of the results shows the flow rate of methane is a main factor in preparing the graphene/Mo2C heterostructure. A schematic diagram of the growth process is also established. Transport measurements are performed to study the superconductivity of the heterostructure which has potential applications in superconducting devices.
Keywords:  graphene/Mo2C heterostructure      CVD      methane flow rate      superconductivity     
Received:  10 January 2017      Published:  05 June 2017
PACS:  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  81.05.ue (Graphene)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  74.70.-b (Superconducting materials other than cuprates)  
Corresponding Authors:  Guanghui Yu, Da Jiang     E-mail:  ghyu@mail.sim.ac.cn;jiangda@mail.sim.ac.cn

Cite this article: 

Rongxuan Deng(邓荣轩), Haoran Zhang(张浩然), Yanhui Zhang(张燕辉), Zhiying Chen(陈志蓥), Yanping Sui(隋妍萍), Xiaoming Ge(葛晓明), Yijian Liang(梁逸俭), Shike Hu(胡诗珂), Guanghui Yu(于广辉), Da Jiang(姜达) Graphene/Mo2C heterostructure directly grown by chemical vapor deposition 2017 Chin. Phys. B 26 067901

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[3] Mattevi C, Kim H and Chhowalla M 2011 J. Mater. Chem. 21 3324
[4] Li X S, Cai W W, Colombo L and Ruoff R S 2009 Nano Lett. 9 4268
[5] Bhimanapati G R, Lin Z, Meunier V, et al. 2015 ACS Nano 9 11509
[6] Le Lay G, Salomon E, De Padova P, Layet J M and Angot T 2014 Aust. J. Chem. 67 1370
[7] Nguyen H, Huang C F, Luo W J, Xia G R, Chen Z Q, Li Z Q, Raymond C, Doyle D and Zhao F 2016 Mater. Lett. 168 1
[8] Zhang S Y, Zhang P G, Xie A J, Li S K, Huang F Z and Shen Y H 2016 Electrochim. Acta 212 912
[9] Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M and Ren W C 2015 Nat. Mater. 14 1135
[10] Meshkian R, Naslund L A, Halim J, Lu J, Barsoum M W and Rosen J 2015 Scripta Mater. 108 147
[11] Meyer S, Nikiforov A V, Petrushina I M, Kohler K, Christensen E, Jensen J O and Bjerrum N J 2015 Int. J. Hydrogen Energy 40 2905
[12] Willens R H, Buehler E and Matthias B T 1967 Phys. Rev. 159 327
[13] Cakir D, Sevik C, Gulseren O and Peeters F M 2016 J. Mater. Chem. A 4 6029
[14] Wang L B, Xu C, Liu Z B, Chen L, Ma X L, Cheng H M, Ren W C and Kang N 2016 ACS Nano 10 4504
[15] Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246
[16] Tsai M L, Su S H, Chang J K, Tsai D S, Chen C H, Wu C I, Li L J, Chen L J and He J H 2014 ACS Nano 8 8317
[17] Wang X M, Cheng Z Z, Xu K, Tsang H K and Xu J B 2013 Nat. Photon. 7 888
[18] Su W J, Chang H C, Shih Y T, Wang Y P, Hsu H P, Huang Y S and Lee K Y 2016 J. Alloys Compd. 671 276
[19] Huang J, Guo L W, Lu W, Zhang Y H, Shi Z, Jia Y P, Li Z L, Yang J W, Chen H X, Mei Z X and Chen X L 2016 Chin. Phys. B 25 067205
[20] Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, O.; zyilmaz B, Castro Neto A H, Hone J, Fogler M M and Basov D N 2016 Nat. Photon. 10 244
[21] Ni G X, Zheng Y, Bae S, Tan C Y, Kahya O, Wu J, Hong B H, Yao K and Ozyilmaz B 2012 ACS Nano 6 3935
[22] Ni G X, Wang H, Wu J S, Fei Z, Goldflam M D, Keilmann F, Ozyilmaz B, Castro Neto A H, Xie X M, Fogler M M and Basov D N 2015 Nat. Mater. 14 1217
[23] Cao N T, Zhang L, Lü Lu, Xie H P, Huang H, Niu D Mei and Gao Y L 2014 Acta Phys. Sin. 63 167903 (in Chinese)
[24] Jiang D, Hu T, You L X, Li Q, Li A, Wang H M, Mu G, Chen Z Y, Zhang H R, Yu G H, Zhu J, Sun Q J, Lin C T, Xiao H, Xie X M and Jiang M H 2014 Nat. Commun. 5 5708
[25] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
[26] Liu N, Pan Z H, Fu L, Zhang C H, Dai B Y and Liu Z F 2011 Nano Res. 4 996
[27] Fan Y, He K, Tan H J, Speller S and Warner J H 2014 Chem. Mater. 26 4984
[1] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[2] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[3] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[4] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[5] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[6] Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys
Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2020, 29(5): 058103.
[7] Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Liang He(何亮), Qiu-Ling Qiu(丘秋凌), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(3): 037201.
[8] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[9] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[10] Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics
Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星). Chin. Phys. B, 2020, 29(11): 117401.
[11] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[12] Evaluation of stress voltage on off-state time-dependent breakdown for GaN MIS-HEMT with SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Qiu-Ling Qiu(丘秋凌), Liu-An Li(李柳暗), Liang He(何亮), Jin-Wei Zhang(张津玮), Chen-Liang Feng(冯辰亮), Zhen-Xing Liu(刘振兴), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Yun-Liang Rao(饶运良), Zhi-Yuan He(贺致远), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(10): 107201.
[13] Possible nodeless s±-wave superconductivity in twisted bilayer graphene
Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰). Chin. Phys. B, 2019, 28(7): 077103.
[14] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[15] Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides
Hai Bo(薄海), Tianshuang Ren(任天爽), Zheng Chen(陈峥), Meng Zhang(张蒙), Yanwu Xie(谢燕武). Chin. Phys. B, 2019, 28(6): 067402.
No Suggested Reading articles found!