CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Temperature-dependent photoluminescence of size-tunable ZnAgInSe quaternary quantum dots |
Qi Ding(丁琪)1, Xiao-Song Zhang(张晓松)1,2, Lan Li(李岚)1, Jian-Ping Xu(徐建萍)1, Ping Zhou(周平)1, Xiao-Fei Dong(董晓菲)1, Ming Yan(晏明)1 |
1 Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China; 2 School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, USA |
|
|
Abstract Colloidal ZnAgInSe (ZAISe) quantum dots (QDs) with different particle sizes were obtained by accommodating the reaction time. In the previous research, photoluminescence (PL) of ZAISe QDs only could be tuned by changing the composition. In this work the size-tunable photoluminescence was observed successfully. The red shift in the photoluminescence spectra was caused by the quantum confinement effect. The time-resolved photoluminescence indicated that the luminescence mechanisms of the ZAISe QDs were contributed by three recombination processes. Furthermore, the temperature-dependent PL spectra were investigated. We verified the regular change of temperature-dependent PL intensity, peak energy, and the emission linewidth of broadening for ZAISe QDs. According to these fitting data, the activation energy (ΔE) of ZAISe QDs with different nanocrystal sizes was obtained and the stability of luminescence was discussed.
|
Received: 05 February 2017
Revised: 14 March 2017
Accepted manuscript online:
|
PACS:
|
78.67.Hc
|
(Quantum dots)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
78.40.Fy
|
(Semiconductors)
|
|
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA014201), the National Key Foundation for Exploring Scientific Instrument of China (Grant No. 2014YQ120351), and the Natural Science Foundation of Tianjin (Grant No. 11JCYBJC00300, 4JCZDJC31200, 15JCYBJC16700, and 15JCYBJC16800). |
Corresponding Authors:
Xiao-Song Zhang
E-mail: zhangxiaosong022@126.com
|
Cite this article:
Qi Ding(丁琪), Xiao-Song Zhang(张晓松), Lan Li(李岚), Jian-Ping Xu(徐建萍), Ping Zhou(周平), Xiao-Fei Dong(董晓菲), Ming Yan(晏明) Temperature-dependent photoluminescence of size-tunable ZnAgInSe quaternary quantum dots 2017 Chin. Phys. B 26 067804
|
[1] |
Meinardi F, McDaniel H, Carulli F, Colombo A, Kirill A V, Makarov N S, Simonutti R, Klimov V I and Brovelli S 2015 Nat. Nanotechnol. 10 878
|
[2] |
Mocatta D, Cohen G, Schattner J, Millo O, Rabani E and Banin U 2011 Science 332 77
|
[3] |
Du J, Du Z, Hu J S, Pan Z X, Shen Q, Sun J K, Long D H, Dong H, Sun L, Zhong X H and Wan L 2016 J. Am. Chem. Soc. 138 4201
|
[4] |
Regulacio M D and Han M Y 2016 Acc. Chem. Res. 49 511
|
[5] |
Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H and Qian L 2015 Nat. Photon. 9 259
|
[6] |
Shirasaki Y, Supran G J, Bawendi M G and Bulovic V 2013 Nat. Photon. 7 13
|
[7] |
Lan X, Masala S and Sargent E H 2014 Nat. Mater. 13 233
|
[8] |
Shen J, Zhu Y, Yang X and Li C Z 2012 Chem. Commun. 48 3686
|
[9] |
Zhao Y, Riemersma C, Pietra F, Koole R, Donega C D M and Meijerink A 2012 ACS Nano 6 9058
|
[10] |
Tatebayashi J, Kako S, Ho J, Lwamoto O S and Arakawa Y 2015 Nat. Photon. 9 501
|
[11] |
Fernando K A S, Sahu S, Liu Y, Lewis W K, Guliants E A, Jafariyan A, Wang P, Bunker C E and Sun Y P 2015 ACS Appl. Mater. Interfaces 7 8363
|
[12] |
Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K and Bawendi M G 2013 Nat. Mater. 12 445
|
[13] |
Wuister S F, van Swart I, Driel F, Hickey S G and Donega C D M 2003 Nano Lett. 3 503
|
[14] |
Shieh F, Saunders A E and Korgel B A 2005 J. Phys. Chem. B 109 8538
|
[15] |
Meinardi F, McDaniel H, Carulli F, Colombo A, Velizhanin K A, Makarov N S, Simonutti R, Klimov V I and Brovelli S 2015 Nat. Nanotechnol. 10 878
|
[16] |
Park J and Kim S W 2011 J. Mater. Chem. 21 3745
|
[17] |
Li C, Chen W, Wu D, Quan D H, Zhou Z M, Hao J J, Qin J, Li Y W, He Z B and Wang K 2015 Sci. Rep. 5 17777
|
[18] |
Zhong H, Wang Z, Bovero E, Lu Z H, Van Vegge F C J M and Scholes G D 2011 J. Phys. Chem. C 115 12396
|
[19] |
Yarema O, Bozyigit D, Rousseau I, Nowack L, Yarema M, Heiss W and Wood V 2013 Nanocrystals Chem. Mater. 25 3753
|
[20] |
Bai T Y, Li C G, Li F F, Zhao L, Wang Z R, Huang H, Chen C L, Han Y, Shi Z and Feng S H 2014 Nanoscale 6 6782
|
[21] |
Kang X, Yang Y, Huang L J, Tao Y, Wang L and Pan D C 2015 Green Chem. 17 4482
|
[22] |
Deng D W, Chen Y, Cao J, Tian J M, Qian Z Y, Achilefu S and Gu Y Q 2012 Chem. Mater. 24 3029
|
[23] |
Zhang W J and Zhong X H 2011 Inorg. Chem. 115 4065
|
[24] |
Zhang J, Xie R and Yang W 2011 Chem. Mater. 23 3357
|
[25] |
Yuan X, Zhao J L, Jing P T, Zhang W J, Li H T, Zhang L G, Zhong X H and Masumoto Y 2012 J. Phys. Chem. C 116 11973
|
[26] |
Guo W S, Chen N, Tu Y, Dong C H, Zhang B B, Hu C H and Chang J 2013 Theranostics 3 99
|
[27] |
Deng D W, Qu L Z, Cheng Z Q, Achilefu S and Gu Y Q 2014 J. Lumin. 146 364
|
[28] |
Deng D W, Qu L Z, Zhang J, Ma Y X and Gu Y Q 2013 ACS Appl. Mater. Interfaces 5 10858
|
[29] |
Deng D W, Qu L Z, Achilefu S and Gu Y Q 2013 Chem. Commun. 49 9494
|
[30] |
Kameyama T, Douke Y, Shibakawa H, Kawaraya M, Segawa H, Kuwabata S and Torimoto T 2014 J. Phys. Chem. C 118 29517
|
[31] |
Liu W Y, Zhang Y, Zhai W W, Wang Y H, Zhang T Q, Gu F P, Chu H R, Zhang H Z, Cui T, Wang Y D, Zhao J and Yu W W 2013 J. Phys. Chem. C 117 19288
|
[32] |
Zhou P, Zhang X S, Li L, Liu X J, Yuan L L and Zhang X G 2015 Opt. Mater. Express 5 2069
|
[33] |
Liu X J, Zhang X S, Li L, Wang X L and Yuan L L 2014 Chin. Phys. B 23 117804
|
[34] |
Ji C Y, Zhang Y, Zhang T Q, Liu W Y, Zhang X Y, Shen H Z, Wang Y, Gao W Z, Wang Y D, Zhao J and Yu W W 2015 J. Phys. Chem. C 119 13841
|
[35] |
Lee H Y, Song J S, Makino H and Yao T 2002 Appl. Phys. Lett. 80 710
|
[36] |
Liu W Y, Zhang Y, Zhao J, Feng Y, Wang D, Zhang T Q, Gao W Z, Chu H R, Yin J Z, Wang Y D, Zhao J and Yu W W 2015 J. Lumin. 162 191
|
[37] |
Wang X, Liang Z R, Xu X Q, Wang N, Fang J, Wang J X and Xu G 2015 J. Alloys Compd. 640 134
|
[38] |
Jara D H, Stamplecoskie K G and Kamat P V 2016 J. Phys. Chem. Lett. 7 1452
|
[39] |
Leach A D P, Shen X, Faust A, Cleveland M C, Croix A D L, Banin U, Pantelides S T and Macdonald J E 2016 J. Phys. Chem. C 120 5207
|
[40] |
O'Donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924
|
[41] |
Zhou P, Zhang X S, Liu X J, Xu J P and Li L 2016 Opt. Express 24 19506
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|