Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067804    DOI: 10.1088/1674-1056/26/6/067804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature-dependent photoluminescence of size-tunable ZnAgInSe quaternary quantum dots

Qi Ding(丁琪)1, Xiao-Song Zhang(张晓松)1,2, Lan Li(李岚)1, Jian-Ping Xu(徐建萍)1, Ping Zhou(周平)1, Xiao-Fei Dong(董晓菲)1, Ming Yan(晏明)1
1 Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China;
2 School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
Abstract  Colloidal ZnAgInSe (ZAISe) quantum dots (QDs) with different particle sizes were obtained by accommodating the reaction time. In the previous research, photoluminescence (PL) of ZAISe QDs only could be tuned by changing the composition. In this work the size-tunable photoluminescence was observed successfully. The red shift in the photoluminescence spectra was caused by the quantum confinement effect. The time-resolved photoluminescence indicated that the luminescence mechanisms of the ZAISe QDs were contributed by three recombination processes. Furthermore, the temperature-dependent PL spectra were investigated. We verified the regular change of temperature-dependent PL intensity, peak energy, and the emission linewidth of broadening for ZAISe QDs. According to these fitting data, the activation energy (ΔE) of ZAISe QDs with different nanocrystal sizes was obtained and the stability of luminescence was discussed.
Keywords:  quaternary quantum dots      temperature-dependent photoluminescence      photoluminescence lifetime  
Received:  05 February 2017      Revised:  14 March 2017      Accepted manuscript online: 
PACS:  78.67.Hc (Quantum dots)  
  78.55.-m (Photoluminescence, properties and materials)  
  78.40.Fy (Semiconductors)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA014201), the National Key Foundation for Exploring Scientific Instrument of China (Grant No. 2014YQ120351), and the Natural Science Foundation of Tianjin (Grant No. 11JCYBJC00300, 4JCZDJC31200, 15JCYBJC16700, and 15JCYBJC16800).
Corresponding Authors:  Xiao-Song Zhang     E-mail:  zhangxiaosong022@126.com

Cite this article: 

Qi Ding(丁琪), Xiao-Song Zhang(张晓松), Lan Li(李岚), Jian-Ping Xu(徐建萍), Ping Zhou(周平), Xiao-Fei Dong(董晓菲), Ming Yan(晏明) Temperature-dependent photoluminescence of size-tunable ZnAgInSe quaternary quantum dots 2017 Chin. Phys. B 26 067804

[1] Meinardi F, McDaniel H, Carulli F, Colombo A, Kirill A V, Makarov N S, Simonutti R, Klimov V I and Brovelli S 2015 Nat. Nanotechnol. 10 878
[2] Mocatta D, Cohen G, Schattner J, Millo O, Rabani E and Banin U 2011 Science 332 77
[3] Du J, Du Z, Hu J S, Pan Z X, Shen Q, Sun J K, Long D H, Dong H, Sun L, Zhong X H and Wan L 2016 J. Am. Chem. Soc. 138 4201
[4] Regulacio M D and Han M Y 2016 Acc. Chem. Res. 49 511
[5] Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H and Qian L 2015 Nat. Photon. 9 259
[6] Shirasaki Y, Supran G J, Bawendi M G and Bulovic V 2013 Nat. Photon. 7 13
[7] Lan X, Masala S and Sargent E H 2014 Nat. Mater. 13 233
[8] Shen J, Zhu Y, Yang X and Li C Z 2012 Chem. Commun. 48 3686
[9] Zhao Y, Riemersma C, Pietra F, Koole R, Donega C D M and Meijerink A 2012 ACS Nano 6 9058
[10] Tatebayashi J, Kako S, Ho J, Lwamoto O S and Arakawa Y 2015 Nat. Photon. 9 501
[11] Fernando K A S, Sahu S, Liu Y, Lewis W K, Guliants E A, Jafariyan A, Wang P, Bunker C E and Sun Y P 2015 ACS Appl. Mater. Interfaces 7 8363
[12] Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K and Bawendi M G 2013 Nat. Mater. 12 445
[13] Wuister S F, van Swart I, Driel F, Hickey S G and Donega C D M 2003 Nano Lett. 3 503
[14] Shieh F, Saunders A E and Korgel B A 2005 J. Phys. Chem. B 109 8538
[15] Meinardi F, McDaniel H, Carulli F, Colombo A, Velizhanin K A, Makarov N S, Simonutti R, Klimov V I and Brovelli S 2015 Nat. Nanotechnol. 10 878
[16] Park J and Kim S W 2011 J. Mater. Chem. 21 3745
[17] Li C, Chen W, Wu D, Quan D H, Zhou Z M, Hao J J, Qin J, Li Y W, He Z B and Wang K 2015 Sci. Rep. 5 17777
[18] Zhong H, Wang Z, Bovero E, Lu Z H, Van Vegge F C J M and Scholes G D 2011 J. Phys. Chem. C 115 12396
[19] Yarema O, Bozyigit D, Rousseau I, Nowack L, Yarema M, Heiss W and Wood V 2013 Nanocrystals Chem. Mater. 25 3753
[20] Bai T Y, Li C G, Li F F, Zhao L, Wang Z R, Huang H, Chen C L, Han Y, Shi Z and Feng S H 2014 Nanoscale 6 6782
[21] Kang X, Yang Y, Huang L J, Tao Y, Wang L and Pan D C 2015 Green Chem. 17 4482
[22] Deng D W, Chen Y, Cao J, Tian J M, Qian Z Y, Achilefu S and Gu Y Q 2012 Chem. Mater. 24 3029
[23] Zhang W J and Zhong X H 2011 Inorg. Chem. 115 4065
[24] Zhang J, Xie R and Yang W 2011 Chem. Mater. 23 3357
[25] Yuan X, Zhao J L, Jing P T, Zhang W J, Li H T, Zhang L G, Zhong X H and Masumoto Y 2012 J. Phys. Chem. C 116 11973
[26] Guo W S, Chen N, Tu Y, Dong C H, Zhang B B, Hu C H and Chang J 2013 Theranostics 3 99
[27] Deng D W, Qu L Z, Cheng Z Q, Achilefu S and Gu Y Q 2014 J. Lumin. 146 364
[28] Deng D W, Qu L Z, Zhang J, Ma Y X and Gu Y Q 2013 ACS Appl. Mater. Interfaces 5 10858
[29] Deng D W, Qu L Z, Achilefu S and Gu Y Q 2013 Chem. Commun. 49 9494
[30] Kameyama T, Douke Y, Shibakawa H, Kawaraya M, Segawa H, Kuwabata S and Torimoto T 2014 J. Phys. Chem. C 118 29517
[31] Liu W Y, Zhang Y, Zhai W W, Wang Y H, Zhang T Q, Gu F P, Chu H R, Zhang H Z, Cui T, Wang Y D, Zhao J and Yu W W 2013 J. Phys. Chem. C 117 19288
[32] Zhou P, Zhang X S, Li L, Liu X J, Yuan L L and Zhang X G 2015 Opt. Mater. Express 5 2069
[33] Liu X J, Zhang X S, Li L, Wang X L and Yuan L L 2014 Chin. Phys. B 23 117804
[34] Ji C Y, Zhang Y, Zhang T Q, Liu W Y, Zhang X Y, Shen H Z, Wang Y, Gao W Z, Wang Y D, Zhao J and Yu W W 2015 J. Phys. Chem. C 119 13841
[35] Lee H Y, Song J S, Makino H and Yao T 2002 Appl. Phys. Lett. 80 710
[36] Liu W Y, Zhang Y, Zhao J, Feng Y, Wang D, Zhang T Q, Gao W Z, Chu H R, Yin J Z, Wang Y D, Zhao J and Yu W W 2015 J. Lumin. 162 191
[37] Wang X, Liang Z R, Xu X Q, Wang N, Fang J, Wang J X and Xu G 2015 J. Alloys Compd. 640 134
[38] Jara D H, Stamplecoskie K G and Kamat P V 2016 J. Phys. Chem. Lett. 7 1452
[39] Leach A D P, Shen X, Faust A, Cleveland M C, Croix A D L, Banin U, Pantelides S T and Macdonald J E 2016 J. Phys. Chem. C 120 5207
[40] O'Donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924
[41] Zhou P, Zhang X S, Liu X J, Xu J P and Li L 2016 Opt. Express 24 19506
[1] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[2] Temperature-dependent photoluminescence on organic-inorganicmetal halide perovskite CH3NH3PbI3-xClx prepared onZnO/FTO substrates using a two-step method
Shiwei Zhuang(庄仕伟), Deqian Xu(徐德前), Jiaxin Xu(徐佳新), Bin Wu(伍斌), Yuantao Zhang(张源涛), Xin Dong(董鑫), Guoxing Li(李国兴), Baolin Zhang(张宝林), Guotong Du(杜国同). Chin. Phys. B, 2017, 26(1): 017802.
[3] Fabrication and temperature-dependent photoluminescence spectra of Zn-Cu-In-S quaternary nanocrystals
Liu Xiao-Juan (刘晓娟), Zhang Xiao-Song (张晓松), Li Lan (李岚), Wang Xue-Liang (王雪亮), Yuan Lin-Lin (苑琳琳). Chin. Phys. B, 2014, 23(11): 117804.
No Suggested Reading articles found!