INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influence of adatom migration on wrinkling morphologies of AlGaN/GaN micro-pyramids grown by selective MOVPE |
Jie Chen(陈杰), Pu-Man Huang(黄溥曼)1, Xiao-Biao Han(韩小标)1, Zheng-Zhou Pan(潘郑州)1, Chang-Ming Zhong(钟昌明)1, Jie-Zhi Liang(梁捷智)1, Zhi-Sheng Wu(吴志盛)1,2, Yang Liu(刘扬)1,2,3, Bai-Jun Zhang(张佰君)1,2 |
1 School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China; 3 Institute of Power Electronics and Control Technology, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract GaN micro-pyramids with AlGaN capping layer are grown by selective metal-organic-vapor phase epitaxy (MOVPE). Compared with bare GaN micro-pyramids, AlGaN/GaN micro-pyramids show wrinkling morphologies at the bottom of the structure. The formation of those special morphologies is associated with the spontaneously formed AlGaN polycrystalline particles on the dielectric mask, owing to the much higher bond energy of Al-N than that of Ga-N. When the sizes of the polycrystalline particles are larger than 50 nm, the uniform source supply behavior is disturbed, thereby leading to unsymmetrical surface morphology. Analysis reveals that the scale of surface wrinkling is related to the migration length of Ga adatoms along the AlGaN {1101} facet. The migration properties of Al and Ga further affect the distribution of Al composition along the sidewalls, characterized by the μ-PL measurement.
|
Received: 29 November 2016
Revised: 12 February 2017
Accepted manuscript online:
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.16.Rf
|
(Micro- and nanoscale pattern formation)
|
|
47.57.ef
|
(Sedimentation and migration)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 61574173), the National Key Research and Development Program, China (Grant No. 2016YFB0400105), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the International Science and Technology Collaboration Program of Guangzhou City, China (Grant No. 2016201604030055), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), Guangdong Provincial Natural Science Foundation, China (Grant No. 2015A030312011), the Science & Technology Plan of Guangdong Province, China (Grant Nos. 2015B090903062, 2015B010132007, and 2015B010129010), the Science and Technology Plan of Guangzhou, China (Grant No. 201508010048), the Science and Technology Plan of Foshan, China (Grant No. 201603130003), Guangdong-Hong Kong Joint Innovation Project of Guangdong Province, China (Grant No. 2014B050505009), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17), the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University (Grant No. 20167612042080001). |
Corresponding Authors:
Yang Liu, Bai-Jun Zhang
E-mail: liuy69@mail.sysu.edu.cn;zhbaij@mail.sysu.edu.cn
|
Cite this article:
Jie Chen(陈杰), Pu-Man Huang(黄溥曼), Xiao-Biao Han(韩小标), Zheng-Zhou Pan(潘郑州), Chang-Ming Zhong(钟昌明), Jie-Zhi Liang(梁捷智), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), Bai-Jun Zhang(张佰君) Influence of adatom migration on wrinkling morphologies of AlGaN/GaN micro-pyramids grown by selective MOVPE 2017 Chin. Phys. B 26 068101
|
[1] |
Xie J, Mita S, Bryan Z, Guo W, Hussey L, Moody B, Schlesser R, Kirste R, Gerhold M and Collazo R 2013 Appl. Phys. Lett. 102 171102
|
[2] |
Grandusky J R, Gibb S R, Mendrick M C, Moe C, Wraback M and Schowalter L J 2011 Appl. Phys. Express 4 082101
|
[3] |
Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
|
[4] |
Zhang C, Sun H Q, Li X N, Sun H, Fan X C, Zhang Z D and Guo Z Y 2016 Chin. Phys. B 25 028501
|
[5] |
Khan M A, Shatalov M, Maruska H P, Wang H M and Kuokstis E 2005 Jpn. J. Appl. Phys. 44 7191
|
[6] |
Hirayama H 2005 J. Appl. Phys. 97 091101
|
[7] |
Floro J A, Follstaedt D M, Provencio P, Hearne S J and Lee S R 2004 J. Appl. Phys. 96 7087
|
[8] |
Lee S R, Koleske D D, Cross K C, Floro J A, Waldrip K E, Wise A T and Mahajan S 2004 Appl. Phys. Lett. 85 6164
|
[9] |
Shatalov M, Sun W, Lunev A, Hu X, Dobrinsky A, Bilenko Y, Yang J, Shur M, Gaska R, Moe C, Garrett G and Wraback M 2012 Appl. Phys. Express 5 082101
|
[10] |
Yang W, McPherson S A, Mao Z, McKernan S and Carter C B 1999 J. Cryst. Growth 204 270
|
[11] |
Kawaguchi Y, Honda Y, Matsushima H, Yamaguchi M, Hiramasu K and Sawaki N 1998 Jpn. J. Appl. Phys. 37 L966
|
[12] |
Xiao H P, Chen Y P, Yang K K, Wei X L, Sun L Z and Zhong J X 2012 Acta Phys. Sin. 61 178101 (in Chinese)
|
[13] |
Ren P, Han G, Fu B L, Xue B, Zhang N, Liu J, Zhao L X, Wang J X and Li J M 2016 Chin. Phys. Lett 33 068101
|
[14] |
Srinivasan S, Stevens M, Ponce F A and Mukai T 2005 Appl. Phys. Lett. 87 131911
|
[15] |
Chen W J, Han X B, Lin J L, Hu G H, Liu M G, Yang Y B, Chen J, Wu Z S, Liu Y and Zhang B J 2015 Chin. Phys. B 24 118101
|
[16] |
Hiruma K, Haga T and Miyazaki M 1990 J. Cryst. Growth 102 717
|
[17] |
Kozawa T, Ohwaki T and Taga Y 1999 Appl. Phys. Lett. 75 3330
|
[18] |
Narita T, Honda Y, Yamaguchi M and Sawaki N 2006 Phys. Stat. Sol. (b) 243 1665
|
[19] |
Honda Y, Torikai M, Nakamura T Y. Kuroiwa, M. Yamaguchi and N. Sawaki 2003 Phy. Stat. Sol. (c) 70 2043
|
[20] |
Arjunan A C, Singh D, Wang H T, Ren F, Kumar P, Singh R K and Pearton S J 2008 Appl. Surf. Sci. 255 3085
|
[21] |
Sakata Y, Inomoto Y and Komatsu K 2000 J. Cryst. Growth 208 130
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|