Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067502    DOI: 10.1088/1674-1056/26/6/067502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides

Lei Xu(许磊)1,2, Jin-Liang Zhao(赵金良)2, Jing-Jie Yang(杨静洁)2, Hong-Guo Zhang(张红国)1, Dan-Min Liu(刘丹敏)3, Ming Yue(岳明)1, Yi-Jian Jang(蒋毅坚)4
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
2 College of Applied Sciences, Beijing University of Technology, Beijing 100124, China;
3 Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China;
4 Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  In this paper, we study the effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides. The powder x-ray diffraction patterns of the La1-xPrxFe11.4Si1.6 and its hydrides show that each of the alloys is crystallized into the single phase of cubic NaZn13-type structure. There are hydrogen-absorbing plateaus under 0.4938 MPa and 0.4882 MPa in the absorbing curves for the La0.8Pr0.2Fe11.4Si1.6 and La0.6Pr0.4Fe11.4Si1.6 compounds. The releasing processes lag behind the absorbing process, which is obviously different from the coincidence between absorbing and releasing curves of the LaFe11.4Si1.6 compound. The remnant hydrogen content for La0.6Pr0.4Fe11.4Si1.6 is significantly more than that for La0.8Pr0.2Fe11.4Si1.6 after hydrogen desorption, indicating that more substitutions of Pr for La are beneficial to retaining more hydrogen atoms in the alloys. The values of maximum magnetic entropy change are 14.91 J/kg·K and 17.995 J/kg·K for La0.8Pr0.2Fe11.4Si1.6H0.13 and La0.6Pr0.4Fe11.4Si1.6H0.87, respectively.
Keywords:  La (Fe      Si)13 compounds      hydrogenating process      magnetocaloric effect      magnetic refrigeration materials     
Received:  16 November 2016      Published:  05 June 2017
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.-y (Studies of specific magnetic materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51301008 and 51171003) and the Beijing Natural Science Foundation, China (Grant No. 1112005).
Corresponding Authors:  Jin-Liang Zhao, Ming Yue     E-mail:  zhaojingliang@bjut.edu.cn;yueming@bjut.edu.cn

Cite this article: 

Lei Xu(许磊), Jin-Liang Zhao(赵金良), Jing-Jie Yang(杨静洁), Hong-Guo Zhang(张红国), Dan-Min Liu(刘丹敏), Ming Yue(岳明), Yi-Jian Jang(蒋毅坚) Effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides 2017 Chin. Phys. B 26 067502

[1] Gschneidner K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[2] Pecharsky V K and Gschneider K A Jr 1997 Phys. Rev. Lett. 78 4494
[3] Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
[4] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[5] Shen B G, Hu F X, Dong Q Y and Sun J R 2013 Chin. Phys. B 22 017502
[6] Liu D M, Huang Q Z, Yue M, Lynn J W, Liu L J, Chen Y, Wu Z H and Zhang J X 2009 Phys. Rev. B 80 174415
[7] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[8] Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X and Liu X B 2009 J. Appl. Phys. 105 07A915
[9] Zhang D K, Zhao J L, Zhang H G, Xu M F and Yue M 2014 J. Supe. Nov. Magn. 27 1899
[10] Zhang H and Shen B G 2015 Chin. Phys. B 24 127504
[11] Shen B G, Z W L and Hu F X 2015 Chin. Phys. B 24 097104
[12] Shen B G, Sun J R. Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[13] Santana R P, Oliveira de N A and Ranke von P J 2011 J. Alloys Compd. 509 6346
[14] Yan A, Müller K H and Gutfleisch O 2008 J. Alloys. Compds. 450 18
[15] Shen J, Gao B, Yan L Q, Li Y X, Zhang H W, Hu F X and Sun J R 2007 Chin. Phys. 16 3848
[16] Shen J, Li Y X, Zhang J, Gao B, Hu F X, Zhang H W, Chen Y Z, Rong C B and Sun J R 2008 J. Appl. Phys. 103 07B317
[17] Balli M, Rosca M, Fruchart D and Gignoux D 2009 J. Magn. Magn. Mater. 321 123
[18] Xie S H, Lia J Q and Zhuang Y H 2007 J. Magn. Magn. Mater. 311 589
[19] Chen Y F, Wang F, Shen B G, Wang G J and Sun J R 2003 J. Appl. Phys. 93 1323
[20] Balli M, Fruchart D and Gignoux D 2008 Appl. Phys. Lett. 92 232505
[21] Chen Y F, Wang F, Shen B G, Hu F X, Sun J R, Wang G J and Cheng Z H 2003 J. Phys.: Condens. Matter 15 L161
[22] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416
[23] Podgornykh S M and Shcherbakova Y V 2006 Phys. Rev. B 73 184421
[24] Lyubina J, Nenkov K, Schultz L and Gutfleisch O 2008 Phys. Rev. Lett. 101 177203
[25] Rosca M, Balli M, Fruchart D, Gignoux D, Hlil E K, Miraglia S, Ouladdiaf B and Wolfers P 2010 J. Alloys Compd. 490 50
[26] Zhao J L, Zhang H G and Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese)
[27] Liu X B, Altounian Z and Beath A D 2004 J. Appl. Phys. 95 7067
[28] Martin M, Gommel C, Borkhart C and Fromm E 1996 J. Alloys Compd. 238 193
[29] Wang G F, Mu L J, Zhang X F, Zhao Z R and Huang J H 2014 J. Appl. Phys. 115 143903
[30] Thanh Cam DT, Bruck E, Tegus O, Klaasse J C P, Gortenmulder T J and Buschow K H J 2006 J. Appl. Phys. 99 08Q107
[31] Xu L, Zhao J L, Zhang D K, Zhang H G and Yue M 2015 J. Alloys Compd. 651 8
[32] Zhao J L, Shen J, Hu F X, Li Y X, Sun J R and Shen B G 2010 J. Appl. Phys. 107 113911
[33] Fujita A, Akamatsu Y and Fukamichi K 1999 J. Appl. Phys. 85 4756
[34] Fujita A, Fujieda S and Fukamichi K 2006 J. Appl. Phys. 99 08K910
[35] Thanh Cam D T, Brück E, Tegus O, Klaasse J C P, Gortenmulder T J and Buschow K H J 2006 J. Appl. Phys. 99 08Q107
[36] Fujii H and Sun H 1995 in Handbook of Magnetic Materials, edited by Buschow K H J (Amsterdam: Elsevier), Vol. 9, pp. 303-404
[1] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[2] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[3] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[4] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[5] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[6] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤), Yaming Wang(王雅鸣), Jiang Wang(王江), Zhongming Ren(任忠鸣). Chin. Phys. B, 2020, 29(10): 107502.
[7] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[8] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
[9] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[10] Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(3): 037504.
[11] Magnetocaloric effect in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Yinina Ma(马怡妮娜), Kun Zhai(翟昆), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Dashan Shang(尚大山), Young Sun(孙阳). Chin. Phys. B, 2018, 27(2): 027501.
[12] Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys
Hui Yang(杨慧), Jun Liu(刘俊), Chao Li(李超), Guang-Long Wang(王广龙), Yuan-Yuan Gong(龚元元), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(10): 107502.
[13] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
[14] Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Abdur Rauf, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(9): 097501.
[15] Magnetic properties and magnetocaloric effect of the Cr-based spinel sulfides Co1-xCuxCr2S4
Xiao-Chao Zheng(郑小超), Xi-Yang Li(李西阳), Lun-Hua He(何伦华), Shao-Ying Zhang(张绍英), Ming-Hua Tang(唐明华), Fang-Wei Wang(王芳卫). Chin. Phys. B, 2017, 26(3): 037502.
No Suggested Reading articles found!