Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047308    DOI: 10.1088/1674-1056/26/4/047308
Special Issue: TOPICAL REVIEW — ZnO-related materials and devices
TOPICAL REVIEW—ZnO-related materials and devices Prev   Next  

Recent progress of ZnMgO ultraviolet photodetector

Jia-Lin Yang(杨佳霖)1,2, Ke-Wei Liu(刘可为)1, De-Zhen Shen(申德振)1
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The ultra-violet (UV) detection has a wide application in both civil and military fields. ZnO is recognized as one of ideal materials for fabricating the UV photodetectors due to its plenty of advantages, such as wide bandgap, low cost, being environment-friendly, high radiation hardness, etc. Moreover, the alloying of ZnO with MgO to make ZnMgO could continually increase the band gap from ~3.3 eV to ~7.8 eV, which allows both solar blind and visible blind UV radiation to be detected. As is well known, ZnO is stabilized in the wurtzite structure, while MgO is stabilized in the rock salt structure. As a result, with increasing the Mg content, the crystal structure of ZnMgO alloy will change from wurtzite structure to rock salt structure. Therefore, ZnMgO photodetectors can be divided into three types based on the structures of alloys, namely, wurtzite-phase, cubic-phase and mixed-phase devices. In this paper, we review recent development and make the prospect of three types of ZnMgO UV photodetectors.

Keywords:  ZnO      ZnMgO      UV      photodetector  
Received:  01 November 2016      Revised:  08 December 2016      Accepted manuscript online: 
PACS:  73.61.Ga (II-VI semiconductors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61475153) and the 100 Talents Program of the Chinese Academy of Sciences.

Corresponding Authors:  Ke-Wei Liu     E-mail:  liukw@ciomp.ac.cn

Cite this article: 

Jia-Lin Yang(杨佳霖), Ke-Wei Liu(刘可为), De-Zhen Shen(申德振) Recent progress of ZnMgO ultraviolet photodetector 2017 Chin. Phys. B 26 047308

[1] Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A and Fang X S 2015 Mater. Today 18 493
[2] Peng L, Hu L F and Fang X S 2013 Adv. Mater. 25 5321
[3] Guo F W, Yang B, Yuan Y B, Xiao Z G, Dong Q F, Bi Y and Huang J S 2012 Nat. Nanotechnol. 7 798
[4] Sang L W, Liao M Y and Sumiya M 2013 Sensors 13 10482
[5] Alaie Z, Nejad S M and Yousefi M H 2015 Mater. Sci. Semicond. Process 29 16
[6] You K, Jiang H, Li D B, Sun X J, Song H, Chen Y R, Li Z M, Miao G Q and Liu H B 2012 Appl. Phys. Lett. 100 4
[7] Xie F, Lu H, Chen D J, Ji X L, Yan F, Zhang R, Zheng Y D, Li L and Zhou J J 2012 IEEE Sens. J. 12 5
[8] Zhu D, Wallis D J and Humphreys C J 2013 Rep. Prog. Phys. 76 31
[9] Scholz F 2012 Semicond. Sci. Technol. 27 15
[10] Hardy M T, Feezell D F, DenBaars S P and Nakamura S 2011 Mater. Today 14 408
[11] Cicek E, McClintock R, Cho C Y, Rahnema B and Razeghi M 2013 Appl. Phys. Lett. 103 4
[12] Sedhain A, Lin J Y and Jiang H X 2012 Appl. Phys. Lett. 100 4
[13] Gordon L, Lyons J L, Janotti A and Van de Walle C G 2014 Phys. Rev. B 89 6
[14] Lorenz K, Peres M, Franco N, Marques J G, Miranda S M C, Magalhaes S, Monteiro T, Wesch W, Alves E and Wendler E 2011 Conference on Oxide-based Materials and Devices II, January 23-26, 2011, San Francisco, CA, USA
[15] Brillson L J and Lu Y C 2011 J. Appl. Phys. 109 33
[16] Liu K W, Sakurai M and Aono M 2010 Sensors 10 8604
[17] Hou Y N, Mei Z X and Du X L 2014 J. Phys. D: Appl. Phys. 47 25
[18] Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T, Vispute R D and Shen H 2003 Appl. Phys. Lett. 82 3424
[19] Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T and Koinuma H 2001 Appl. Phys. Lett. 78 1237
[20] Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H and Kawasaki M 2007 Science 315 1388
[21] Shao R W, Zheng K, Wei B, Zhang Y F, Li Y J, Han X D, Zhang Z and Zou J 2014 Nanoscale 6 4936
[22] Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y 1998 Appl. Phys. Lett. 72 2466
[23] Ohtomo A, Tamura K, Kawasaki M, Makino T, Segawa Y, Tang Z K, Wong G K L, Matsumoto Y and Koinuma H 2000 Appl. Phys. Lett. 77 2204
[24] Gruber T, Kirchner C, Kling R, Reuss F and Waag A 2004 Appl. Phys. Lett. 84 5359
[25] Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A and Kawasaki M 2010 Appl. Phys. Lett. 97 3
[26] Yang W, Vispute R D, Choopun S, Sharma R P, Venkatesan T and Shen H 2001 Appl. Phys. Lett. 78 2787
[27] Zhu H, Shan C X, Wang L K, Zheng J, Zhang J Y, Yao B and Shen D Z 2010 J. Phys. Chem. C 114 7169
[28] Liu K W, Shen D Z, Shan C X, Zhang J Y, Yao B, Zhao D X, Lu Y M and Fan X W 2007 Appl. Phys. Lett. 91 3
[29] Tabares G, Hierro A, Ulloa J M, Guzman A, Munoz E, Nakamura A, Hayashi T and Temmyo J 2010 Appl. Phys. Lett. 96 3
[30] Tang K, Huang J, Zeng Q K, Zhang J J, Shi W M, Xia Y B and Wang L J 2011 7th International Conference on Thin Film Physics and Applications, September 24-27, 2010, Shanghai, China
[31] Li G M, Zhang J W, Liu Y and Zhang K F 2011 Opt. Eng. 50 4
[32] Liu R S, Jiang D Y, Duan Q, Sun L, Tian C G, Liang Q C, Gao S and Qin J M 2014 Appl. Phys. Lett. 105 4
[33] Li J Y, Chang S P, Lin H H and Chang S J 2015 IEEE Photon. Technol. Lett. 27 978
[34] Hwang J D and Lin G S 2016 Nanotechnology 27 6
[35] Hou Y N, Mei Z X, Liang H L, Ye D Q, Liang S, Gu C Z and Du X L 2011 Appl. Phys. Lett. 98 3
[36] Schoenfeld W V, Wei M, Boutwell R C and Liu H Y 2014 Annual Conference on Oxide-Based Materials and Devices V held at SPIE Photonics West, February 2-5, 2014, San Francisco, CA, USA
[37] Zhao Y M, Zhang J Y, Jiang D Y, Shan C X, Zhang Z Z, Yao B, Zhao D X and Shen D Z 2009 ACS Appl. Mater. Interfaces 1 2428
[38] Liu K W, Shen D Z, Shan C X, Zhang J Y, Jiang D Y, Zhao Y M, Yao B and Zhao D X 2008 J. Phys. D: Appl. Phys. 41 3
[39] Jiang D Y, Zhang J Y, Liu K W, Zhao Y M, Cong C X, Lu Y M, Yao B, Zhang Z Z and Shen D Z 2007 Semicond. Sci. Technol. 22 687
[40] Hou Y N, Mei Z X, Liang H L, Ye D Q, Gu C Z, Du X L and Lu Y C 2013 IEEE Trans. Electron Dev. 60 3474
[41] Tian C H, Jiang D Y, Tan Z D, Duan Q, Liu R S, Sun L, Qin J M, Hou J H, Gao S, Liang Q C and Zhao J X 2014 Mater. Res. Bull. 60 46
[42] Chen H Y, Liu K W, Chen X, Zhang Z Z, Fan M M, Jiang M M, Xie X H, Zhao H F and Shen D Z 2014 J. Mater. Chem. C 2 9689
[43] Zhao Y J, Jiang D Y, Liu R S, Duan Q, Tian C G, Sun L, Gao S, Qin J M, Liang Q C and Zhao J X 2015 Solid-State Electron. 111 223
[44] Tian C G, Jiang D Y, Pei J A, Sun L, Liu R S, Guo Z X, Hou J H, Zhao J X, Liang Q C, Gao S and Qin J M 2016 J. Alloys Compd. 667 65
[45] Sun L, Jiang D Y, Zhang G Y, Liu R S, Duan Q, Qin J M, Liang Q C, Gao S, Hou J H, Zhao J X, Liu W Q and Shen X D 2016 J. Appl. Phys. 119 5
[46] Hu Z F, Li Z J, Zhu L, Liu F J, Lv Y W, Zhang X Q and Wang Y S 2012 Opt. Lett. 37 3072
[47] Shan C X, Liu J S, Lu Y J, Li B H, Ling F C C and Shen D Z 2015 Opt. Lett. 40 3041
[48] Zhang L N, Lin H T, Wu Y S and Zhuo S P 2016 Chem. Phys. Lett. 661 224
[49] Vempati S, Chirakkara S, Mitra J, Dawson P, Nanda K K and Krupanidhi S B 2012 Appl. Phys. Lett. 100 4
[50] Fan J C, Sreekanth K M, Xie Z, Chang S L and Rao K V 2013 Prog. Mater. Sci. 58 874
[51] Zhang B, Li M, Wang J Z and Shi L Q 2013 Chin. Phys. Lett. 30 027303
[52] Liu L, Xu J L, Wang D D, Jiang M M, Wang S P, Li B H, Zhang Z Z, Zhao D X, Shan C X, Yao B and Shen D Z 2012 Phys. Rev. Lett. 108 5
[53] Liu Z L, Mei Z X, Zhang T C, Liu Y P, Guo Y, Du X L, Hallen A, Zhu J J and Kuznetsov A Y 2009 J. Cryst. Growth 311 4356
[54] Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B and Lin Z 2011 Appl. Phys. Lett. 98 3
[55] Liang H L, Mei Z X, Zhang Q H, Gu L, Liang S, Hou Y N, Ye D Q, Gu C Z, Yu R C and Du X L 2011 Appl. Phys. Lett. 98 3
[56] Hou Y N, Mei Z X, Liang H L, Ye D Q, Gu C Z and Du X L 2013 Appl. Phys. Lett. 102 4
[57] Liang H L, Mei Z X, Hou Y N, Liang S, Liu Z L, Liu Y P, Li J Q and Du X L 2013 J. Cryst. Growth 381 6
[58] Jiang D Y, Tian C G, Yang G, Qin J M, Liang Q C, Zhao J X, Hou J H and Gao S 2015 Mater. Res. Bull. 67 158
[59] Zheng Q H, Huang F, Huang J, Hu Q C, Chen D G and Ding K 2012 IEEE Electron Dev. Lett. 33 1033
[60] Hwang J D, Lin J S and Hwang S B 2015 J. Phys. D: Appl. Phys. 48 6
[61] Wang L K, Ju Z G, Zhang J Y, Zheng J, Shen D Z, Yao B, Zhao D X, Zhang Z Z, Li B H and Shan C X 2009 Appl. Phys. Lett. 95 3
[62] Han S, Zhang J Y, Zhang Z Z, Zhao Y M, Wang L K, Zheng J A, Yao B, Zhao D X and Shen D Z 2010 ACS Appl. Mater. Interfaces 2 1918
[63] Jiang D Y, Shan C X, Zhang J Y, Lu Y M, Yao B, Zhao D X, Zhang Z Z, Shen D Z and Yang C L 2009 J. Phys. D: Appl. Phys. 42 3
[64] Fan M M, Liu K W, Chen X, Zhang Z Z, Li B H, Zhao H F and Shen D Z 2015 J. Mater. Chem. C 3 313
[65] Han S, Zhang Z Z, Zhang J Y, Wang L K, Zheng J, Zhao H F, Zhang Y C, Jiang M M, Wang S P, Zhao D X, Shan C X, Li B H and Shen D Z 2011 Appl. Phys. Lett. 99 4
[66] Boutwell R C, Wei M and Schoenfeld W V 2013 Appl. Surf. Sci. 284 254
[67] Ju Z G, Shan C X, Jiang D Y, Zhang J Y, Yao B, Zhao D X, Shen D Z and Fan X W 2008 Appl. Phys. Lett. 9 3
[68] Xie X H, Zhang Z Z, Li B H, Wang S P, Jiang M M, Shan C X, Zhao D X, Chen H Y and Shen D Z 2014 Opt. Express 22 246
[69] Xie X H, Zhang Z Z, Li B H, Wang S P and Shen D Z 2015 Opt. Express 23 32329
[70] Boutwell R C, Wei M and Schoenfeld W V 2013 Appl. Phys. Lett. 103 4
[71] Liu C Y, Xu H Y, Wang L, Li X H and Liu Y C 2009 J. Appl. Phys. 106 4
[72] Xie X H, Zhang Z Z, Shan C X, Chen H Y and Shen D Z 2012 Appl. Phys. Lett. 101 3
[73] Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X and Shen D Z 2014 Appl. Phys. Lett. 10 5
[74] Fan M M, Liu K W, Chen X, Wang X, Zhang Z Z, Li B H and Shen D Z 2015 ACS Appl. Mater. Interfaces 7 20600
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[5] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[10] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Fast-speed self-powered PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector with solar-blind UV/visible dual-band photodetection
Ming-Ming Fan(范明明), Kang-Li Xu(许康丽), Ling Cao(曹铃), and Xiu-Yan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 048501.
[14] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[15] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
No Suggested Reading articles found!