Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 120304    DOI: 10.1088/1674-1056/26/12/120304
GENERAL Prev   Next  

Topological superfluid in a two-dimensional polarized Fermi gas with spin-orbit coupling and adiabatic rotation

Lei Qiao(乔雷)1,2, Cheng Chi(迟诚)1,2
1. School of Physics, Peking University, Beijing 100871, China;
2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  We study the properties of superfluid in a two-dimensional (2D) polarized Fermi gas with spin-orbit coupling and adiabatic rotation which are trapped in a harmonic potential. Due to the competition between polarization, spin-orbit coupling, and adiabatic rotation, the Fermi gas exhibits many intriguing phenomena. By using the Bardeen-Cooper-Schrieffer (BCS) mean-field method with local density approximation, we investigate the dependence of order parameter solution on the spin-orbit coupling strength and the rotation velocity. The energy spectra with different rotation velocities are studied in detail. Besides, the conditions for the zero-energy Majorana fermions in topological superfluid phase to be observed are obtained. By investigating distributions of number density, we find that the rotation has opposite effect on the distribution of number density with different spins, which leads to the enhancement of the polarization of Fermi gas. Here, we focus on the region of BCS pairing and ignore the Fulde-Ferrell-Larkin-Ovchinnikov state.
Keywords:  topological superfluid      BCS mean field      spin-orbit coupling      polarized Fermi gas  
Received:  27 May 2017      Revised:  15 September 2017      Accepted manuscript online: 
PACS:  03.75.Ss (Degenerate Fermi gases)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  67.85.Lm (Degenerate Fermi gases)  
Corresponding Authors:  Lei Qiao     E-mail:  leiqiao@pku.edu.cn

Cite this article: 

Lei Qiao(乔雷), Cheng Chi(迟诚) Topological superfluid in a two-dimensional polarized Fermi gas with spin-orbit coupling and adiabatic rotation 2017 Chin. Phys. B 26 120304

[1] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Lin Y J, Jiménez-García and Spielman I B 2011 Nature 471 83
[5] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[6] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
[7] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[8] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[9] Zhang C, Tewari S, Lutchyn R M and Das Sarma S 2008 Phys. Rev. Lett. 101 160401
[10] Yu Z Q and Zhai H 2011 Phys. Rev. Lett. 107 195305
[11] Hu H, Jiang L, Liu X J and Pu H 2011 Phys. Rev. Lett. 107 195304
[12] He L and Huang X G 2012 Phys. Rev. Lett. 108 145302
[13] Gong M, Tewari S and Zhang C 2011 Phys. Rev. Lett. 107 195303
[14] Zhou J, Zhang W and Yi W 2011 Phys. Rev. A 84 063603
[15] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
[16] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
[17] Patridge G B, Li W, Kamar R, Liao Y and Hulet R G 2006 Science 311 503
[18] Nygaard N, Bruun G M, Clark C W and Feder D L 2003 Phys. Rev. Lett. 90 210402
[19] Machida M and Koyama T 2005 Phys. Rev. Lett. 94 140401
[20] Sensarma R, Randeria M and Ho T L 2006 Phys. Rev. Lett. 96 090403
[21] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047
[22] Zwierlein M W, Schirotzek A, Schunck C and Ketterle W 2006 Science 311 492
[23] Ho T L and Ciobanu C V 2000 Phys. Rev. Lett. 85 4648
[24] Baranov M A, Osterloh K and Lewenstein M 2005 Phys. Rev. Lett. 94 070404
[25] Cooper N R, Wilkin N K and Gunn J M F 2001 Phys. Rev. Lett. 87 120405
[26] Fischer U R and Baym G 2003 Phys. Rev. Lett. 90 140402
[27] Bausmerth I, Recati A and Stringari S 2008 Phys. Rev. Lett. 100 070401
[28] Bausmerth I, Recati A and Stringari S 2008 Phys. Rev. A 78 063603
[29] Urban M and Schuck P 2008 Phys. Rev. A 78 011601
[30] Iskin M and Tiesinga E 2009 Phys. Rev. A 79 053621
[31] Doko E, Subasi A L and Iskin M 2016 Phys. Rev. A 93 033640
[32] Yi W and Duan L M 2006 Phys. Rev. A 73 031604
[33] Goldman N, Juzeliunas G, Ohberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[34] Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
[35] Randeria M, Duan J M and Shieh L Y 1989 Phys. Rev. Lett. 62 981
[36] Yang X and Wan S 2012 Phys. Rev. A 85 023633
[37] Haque M and Stoof H T C 2006 Phys. Rev. A 74 011602
[38] Liu W V and Wilczek F 2003 Phys. Rev. Lett. 90 047002
[39] Forbes M M, Gubankova E, Liu W V and Wilczek F 2005 Phys. Rev. Lett. 94 017001
[40] Ghosh P, Sau J D, Tewari S and Das Sarma S 2010 Phys. Rev. B 82 184525
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
No Suggested Reading articles found!