|
|
Topological superfluid in a two-dimensional polarized Fermi gas with spin-orbit coupling and adiabatic rotation |
Lei Qiao(乔雷)1,2, Cheng Chi(迟诚)1,2 |
1. School of Physics, Peking University, Beijing 100871, China; 2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract We study the properties of superfluid in a two-dimensional (2D) polarized Fermi gas with spin-orbit coupling and adiabatic rotation which are trapped in a harmonic potential. Due to the competition between polarization, spin-orbit coupling, and adiabatic rotation, the Fermi gas exhibits many intriguing phenomena. By using the Bardeen-Cooper-Schrieffer (BCS) mean-field method with local density approximation, we investigate the dependence of order parameter solution on the spin-orbit coupling strength and the rotation velocity. The energy spectra with different rotation velocities are studied in detail. Besides, the conditions for the zero-energy Majorana fermions in topological superfluid phase to be observed are obtained. By investigating distributions of number density, we find that the rotation has opposite effect on the distribution of number density with different spins, which leads to the enhancement of the polarization of Fermi gas. Here, we focus on the region of BCS pairing and ignore the Fulde-Ferrell-Larkin-Ovchinnikov state.
|
Received: 27 May 2017
Revised: 15 September 2017
Accepted manuscript online:
|
PACS:
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
67.85.Lm
|
(Degenerate Fermi gases)
|
|
Corresponding Authors:
Lei Qiao
E-mail: leiqiao@pku.edu.cn
|
Cite this article:
Lei Qiao(乔雷), Cheng Chi(迟诚) Topological superfluid in a two-dimensional polarized Fermi gas with spin-orbit coupling and adiabatic rotation 2017 Chin. Phys. B 26 120304
|
[1] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
[2] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[3] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[4] |
Lin Y J, Jiménez-García and Spielman I B 2011 Nature 471 83
|
[5] |
Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
|
[6] |
Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
|
[7] |
Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
|
[8] |
Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
|
[9] |
Zhang C, Tewari S, Lutchyn R M and Das Sarma S 2008 Phys. Rev. Lett. 101 160401
|
[10] |
Yu Z Q and Zhai H 2011 Phys. Rev. Lett. 107 195305
|
[11] |
Hu H, Jiang L, Liu X J and Pu H 2011 Phys. Rev. Lett. 107 195304
|
[12] |
He L and Huang X G 2012 Phys. Rev. Lett. 108 145302
|
[13] |
Gong M, Tewari S and Zhang C 2011 Phys. Rev. Lett. 107 195303
|
[14] |
Zhou J, Zhang W and Yi W 2011 Phys. Rev. A 84 063603
|
[15] |
Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
|
[16] |
Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
|
[17] |
Patridge G B, Li W, Kamar R, Liao Y and Hulet R G 2006 Science 311 503
|
[18] |
Nygaard N, Bruun G M, Clark C W and Feder D L 2003 Phys. Rev. Lett. 90 210402
|
[19] |
Machida M and Koyama T 2005 Phys. Rev. Lett. 94 140401
|
[20] |
Sensarma R, Randeria M and Ho T L 2006 Phys. Rev. Lett. 96 090403
|
[21] |
Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047
|
[22] |
Zwierlein M W, Schirotzek A, Schunck C and Ketterle W 2006 Science 311 492
|
[23] |
Ho T L and Ciobanu C V 2000 Phys. Rev. Lett. 85 4648
|
[24] |
Baranov M A, Osterloh K and Lewenstein M 2005 Phys. Rev. Lett. 94 070404
|
[25] |
Cooper N R, Wilkin N K and Gunn J M F 2001 Phys. Rev. Lett. 87 120405
|
[26] |
Fischer U R and Baym G 2003 Phys. Rev. Lett. 90 140402
|
[27] |
Bausmerth I, Recati A and Stringari S 2008 Phys. Rev. Lett. 100 070401
|
[28] |
Bausmerth I, Recati A and Stringari S 2008 Phys. Rev. A 78 063603
|
[29] |
Urban M and Schuck P 2008 Phys. Rev. A 78 011601
|
[30] |
Iskin M and Tiesinga E 2009 Phys. Rev. A 79 053621
|
[31] |
Doko E, Subasi A L and Iskin M 2016 Phys. Rev. A 93 033640
|
[32] |
Yi W and Duan L M 2006 Phys. Rev. A 73 031604
|
[33] |
Goldman N, Juzeliunas G, Ohberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
|
[34] |
Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
|
[35] |
Randeria M, Duan J M and Shieh L Y 1989 Phys. Rev. Lett. 62 981
|
[36] |
Yang X and Wan S 2012 Phys. Rev. A 85 023633
|
[37] |
Haque M and Stoof H T C 2006 Phys. Rev. A 74 011602
|
[38] |
Liu W V and Wilczek F 2003 Phys. Rev. Lett. 90 047002
|
[39] |
Forbes M M, Gubankova E, Liu W V and Wilczek F 2005 Phys. Rev. Lett. 94 017001
|
[40] |
Ghosh P, Sau J D, Tewari S and Das Sarma S 2010 Phys. Rev. B 82 184525
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|