Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 106402    DOI: 10.1088/1674-1056/26/10/106402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Anomalous behavior and phase transformation of α -GaOOH nanocrystals under static compression

Zhao Zhang(张钊)1, Hang Cui(崔航)1, Da-Peng Yang(杨大鹏)2, Jian Zhang(张剑)1, Shun-Xi Tang(汤顺熙)1, Si Wu(吴思)1, Qi-Liang Cui(崔啟良)1
1. College of Physics, State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130012, China
Abstract  

The structural compression mechanism and compressibility of gallium oxyhydroxide, α -GaOOH, are investigated by in situ synchrotron radiation x-ray diffraction at pressures up to 31.0 GPa by using the diamond anvil cell technique. The α -GaOOH sustains its orthorhombic structure when the pressure is lower than 23.8 GPa. The compression is anisotropic under hydrostatic conditions, with the a-axis being most compressible. The compression proceeds mainly by shrinkage of the void channels formed by the coordination GaO3(OH)3 octahedra of the crystal structure. Anomaly is found in the compression behavior to occur at 14.6 GPa, which is concomitant with the equatorial distortion of the GaO3(OH)3 octahedra. A kink occurs at 14.6 GPa in the plot of finite strain f versus normalized stress F, indicating the change in the bulk compression behavior. The fittings of a second order Birch-Murnaghan equation of state to the P-V data in different pressure ranges result in the bulk moduli B0=199(1) GPa for P < 14.6 GPa and B0=167(2) GPa for P > 14.6 GPa. As the pressure is increased to about 25.8 GPa, a first-order phase transformation takes place, which is evidenced by the abrupt decrease in the unit cell volume and b and c lattice parameters.

Keywords:  gallium oxyhydroxide      high pressure      synchrotron radiation      equation of state  
Received:  11 May 2017      Revised:  18 July 2017      Published:  05 October 2017
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  82.30.Rs (Hydrogen bonding, hydrophilic effects)  
  91.60.Hg (Phase changes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 50772043, 51172087, and 11074089) and the National Basic Research Program of China (Grant No. 2011CB808200).

Corresponding Authors:  Da-Peng Yang, Jian Zhang     E-mail:  ydp@jlu.edu.cn;zhang_jian@jlu.edu.cn

Cite this article: 

Zhao Zhang(张钊), Hang Cui(崔航), Da-Peng Yang(杨大鹏), Jian Zhang(张剑), Shun-Xi Tang(汤顺熙), Si Wu(吴思), Qi-Liang Cui(崔啟良) Anomalous behavior and phase transformation of α -GaOOH nanocrystals under static compression 2017 Chin. Phys. B 26 106402

[1] Hemley R J, Jephcoat A P, Mao H K, Zha C S, Finger L W and Cox D E 1987 Nature 330 737
[2] Chou I M, Blank J G, Goncharov A F, Mao H K and Hemley R J 1998 Science 281 809
[3] Boldyreva E V 2004 J. Mol. Struct. 700 151
[4] Wang K, Duan D F, Wang R, Liu D, Tang L Y, Cui T, Liu B B, Cui Q L, Liu J, Zou B and Zou G T 2009 J. Phys. Chem. B 113 14719
[5] Meade C and Jeanloz R 1990 Geophys. Res. Lett. 17 1157
[6] Iizuka R, Kagi H, Komatsu K, Ushijima D, Nakano S, Sano-Furukawa A, Nagai T and Yagi T 2011 Phys. Chem. Miner. 38 777
[7] Nguyen J H, Kruger M B and Jeanloz R 1997 Phys. Rev. Lett. 78 1936
[8] Friedrich A, Haussühl E, Boehler R, Morgenroth W, Juarez-Arellano E A and Winkler B 2007 Am. Mineral. 92 1640
[9] Friedrich A, Wilson D J, Haussühl E, Winkler B, Morgenroth W, Refson K and Milman V 2007 Phys. Chem. Miner. 34 145
[10] Mao H K, Shu J, Hu J and Hemley R J 2010 J. Superhard Mater. 32 192
[11] Xu J A, Hu J, Ming L C, Huang E, and Xie H 1994 Geophys. Res. Lett. 21 161
[12] Grevel K D, Burchard M, Fasshauer D W and Peun T 2000 J. Geophys. Res.:Solid Earth 105 27877
[13] Meade C and Jeanloz R 1991 Science 252 68
[14] Sato T and Nakamura T 1982 J. Chem. Technol. Biot. 32 469
[15] Lee H K and Yu J S 2012 Jpn. J. Appl. Phys. 51 102102
[16] Sun M, Li D, Zhang W, Fu X, Shao Y, Li W, Xiao G and He Y 2010 Nanotechnology 21 355601
[17] Sano-Furukawa A, Yagi T, Okada T, Gotou H and Kikegawa T 2012 Phys. Chem. Miner. 39 375
[18] Bolotina, N, Molchanov, V, Dyuzheva, T, Lityagina, L and Bendeliani, N 2008 Crystallogr. Rep. 53 960
[19] Shi L, Zhang J, Wu S, Li Y, Jiang L and Cui Q 2014 J. Am. Ceram. Soc. 97 2607
[20] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91(B5) 4673
[21] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Press. Res. 14 235
[22] Hammersley A P 1997 ESRF Internal Report ESRF97HA02T
[23] Hammersley A P 1998 ESRF Internal Report ESRF98HA01T
[24] Toby B H 2001 J. Appl. Cryst. 34 210
[25] Larson A C and Von Dreele R B 1994 Los Alamos National Laboratory Report LAUR 86-748
[26] Pye M F, Birtill J J and Dickens P G 1977 Acta Crystallogr. B 33 3224
[27] Anderson D L and Anderson O L 1970 J. Geophys. Res. 75 3494
[28] Nagai T, Kagi H and Yamanaka T 2003 Am. Mineral. 88 1423
[29] Xu W, Greenberg E, Rozenberg G K, Pasternak M P, Bykova E, Boffa-Ballaran T, Dubrovinsky L, Prakapenka V, Hanfland M, Vekilova O Y, Simak S I and Abrikosov I A 2013 Phys. Rev. Lett. 111 175501
[30] Nikolaev N A, Lityagina L M, Dyuzheva T I, Kulikova L F, Bendeliani N A and Vereshchagin L F 2008 J. Alloys Compd. 459 95
[31] Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, Iizuka R, Ohtani E and Yagi T 2009 Am. Mineral. 94 1255
[32] Steiner T and Saenger W 1994 Acta Crystallogr., Sect. B:Struct. Sci. 50 348
[33] Steiner T 2002 Angew. Chem. Int. Ed. 41 48
[34] Iizuka R, Yagi T, Komatsu K, Gotou H, Tsuchiya T, Kusaba K and Kagi H 2013 Am. Mineral. 98 1421
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[3] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[4] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[5] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[6] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[9] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[10] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[11] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[12] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[13] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[14] A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
Wen-Shu Shen(沈文舒), Lei Wu(吴雷), Tian-Ji Ou(欧天吉), Dong-Hui Yue(岳冬辉), Ting-Ting Ji(冀婷婷), Yong-Hao Han(韩永昊), Wen-Liang Xu(许文良), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2020, 29(1): 010702.
[15] Structural transitions in NaNH2 via recrystallization under high pressure
Yanping Huang(黄艳萍), Xiaoli Haung(黄晓丽), Xin Wang(王鑫), Wenting Zhang(张文亭), Di Zhou(周迪), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(9): 096402.
No Suggested Reading articles found!