Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077804    DOI: 10.1088/1674-1056/25/7/077804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field

Xu-Fang Bai(白旭芳)1, Ying Zhang(张颖)2, Wuyunqimuge(乌云其木格)1, Eerdunchaolu(额尔敦朝鲁)2
1 College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028043, China;
2 Institute of Condensed Matter Physics, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
Abstract  Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron-phonon coupling strength α, resonant frequency of the magnetic field ωc, confinement strength of the quantum dot ω0, and dielectric constant ratio of the medium η ; the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate ψ2, and dielectric constant ratio of the medium η; the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller.
Keywords:  quantum dot      magneto-bipolaron      qubit      Lee-Low-Pines-Pekar variational method  
Received:  05 November 2015      Revised:  28 March 2015      Published:  05 July 2016
PACS:  78.67.Hc (Quantum dots)  
  71.38.-k (Polarons and electron-phonon interactions)  
  63.20.kd (Phonon-electron interactions)  
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013407119) and the Items of Institution of Higher Education Scientific Research of Hebei Province and Inner Mongolia, China (Grant Nos. ZD20131008, Z2015149, Z2015219, and NJZY14189).
Corresponding Authors:  Eerdunchaolu     E-mail:  eerdunchaolu@163.com

Cite this article: 

Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁) Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field 2016 Chin. Phys. B 25 077804

[1] Feynman P R 1982 Int. J. Theor. Phys. 21 467
[2] Feynman P R 1986 Foundations of Physics 16 507
[3] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[4] Gershenfeld N A and Chuang L 1997 Science 275 350
[5] Kane B E 1998 Nature 393 133
[6] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[7] Nakamura Y, Pashkin Yu A and Tsai J S 1999 Nature 398 786
[8] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[9] Li X Q and Yan Y J 2002 Phys. Rev. B 65 205301
[10] Cen L X, Li X Q and Yan Y J 2003 Phys. Rev. Lett. 90 147902
[11] Li S S, Long G L, Bai F S, Feng S L and Zheng H Z 2001 Proc. Nat. Acad. Sci.USA 98 11847
[12] Li S S, Xia J B, Yang F H, Ni u Z C, Feng S L and Zheng H Z 2001 J. Appl. Phys. 90 6151
[13] Furuta S, Barnes C H W and Doran C J L 2004 Phys. Rev. B 70 205320
[14] Jordan K and Stephen J P 2005 Phys. Rev. B 71 125332
[15] Li H J, Sun J K and Xiao J L 2010 Chin. Phys. B 19 010314
[16] Zhao C L and Cong Y C 2012 Acta Phys. Sin. 61 186301 (in Chinese)
[17] Chen Y J and Xiao J L 2013 J. Low Temp. Phys. 17 60
[18] Sun Y, Ding Z H and Xiao J L 2014 J. Low Temp. Phys. 177 151
[19] Eerdunchaolu, Bai X F and Han C 2014 Acta Phys. Sin. 63 027501 (in Chinese)
[20] Bai X F, Wuyunqimuge, Xin W and Eerdunchaolu 2014 Acta Phys. Sin. 63 177803 (in Chinese)
[21] Zhao Y W, Han C, Xin W and Eerdunchaolu 2014 Superlattices Mi-crostruct. 74 198
[22] Lee T D, Low F M and Pines D 1953 Phys. Rev. 90 97
[23] Yildirim T and Ercelebi A 1991 J. Phys. Condens. Matter 3 1271
[24] Chatterjee A 1990 Phys. Rev. B 41 1668
[1] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[2] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[3] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[4] Double-dot interferometer for quantum measurement of Majorana qubits and stabilizers
Kai Zhou(周凯), Cheng Zhang(张程), Lupei Qin(秦陆培), and Xin-Qi Li(李新奇). Chin. Phys. B, 2021, 30(1): 010301.
[5] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[6] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[7] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[8] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[9] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[10] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[11] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[12] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[13] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[14] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[15] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
No Suggested Reading articles found!