Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077804    DOI: 10.1088/1674-1056/25/7/077804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field

Xu-Fang Bai(白旭芳)1, Ying Zhang(张颖)2, Wuyunqimuge(乌云其木格)1, Eerdunchaolu(额尔敦朝鲁)2
1 College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028043, China;
2 Institute of Condensed Matter Physics, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
Abstract  Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron-phonon coupling strength α, resonant frequency of the magnetic field ωc, confinement strength of the quantum dot ω0, and dielectric constant ratio of the medium η ; the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate ψ2, and dielectric constant ratio of the medium η; the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller.
Keywords:  quantum dot      magneto-bipolaron      qubit      Lee-Low-Pines-Pekar variational method  
Received:  05 November 2015      Revised:  28 March 2015      Accepted manuscript online: 
PACS:  78.67.Hc (Quantum dots)  
  71.38.-k (Polarons and electron-phonon interactions)  
  63.20.kd (Phonon-electron interactions)  
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013407119) and the Items of Institution of Higher Education Scientific Research of Hebei Province and Inner Mongolia, China (Grant Nos. ZD20131008, Z2015149, Z2015219, and NJZY14189).
Corresponding Authors:  Eerdunchaolu     E-mail:  eerdunchaolu@163.com

Cite this article: 

Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁) Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field 2016 Chin. Phys. B 25 077804

[1] Feynman P R 1982 Int. J. Theor. Phys. 21 467
[2] Feynman P R 1986 Foundations of Physics 16 507
[3] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[4] Gershenfeld N A and Chuang L 1997 Science 275 350
[5] Kane B E 1998 Nature 393 133
[6] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[7] Nakamura Y, Pashkin Yu A and Tsai J S 1999 Nature 398 786
[8] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[9] Li X Q and Yan Y J 2002 Phys. Rev. B 65 205301
[10] Cen L X, Li X Q and Yan Y J 2003 Phys. Rev. Lett. 90 147902
[11] Li S S, Long G L, Bai F S, Feng S L and Zheng H Z 2001 Proc. Nat. Acad. Sci.USA 98 11847
[12] Li S S, Xia J B, Yang F H, Ni u Z C, Feng S L and Zheng H Z 2001 J. Appl. Phys. 90 6151
[13] Furuta S, Barnes C H W and Doran C J L 2004 Phys. Rev. B 70 205320
[14] Jordan K and Stephen J P 2005 Phys. Rev. B 71 125332
[15] Li H J, Sun J K and Xiao J L 2010 Chin. Phys. B 19 010314
[16] Zhao C L and Cong Y C 2012 Acta Phys. Sin. 61 186301 (in Chinese)
[17] Chen Y J and Xiao J L 2013 J. Low Temp. Phys. 17 60
[18] Sun Y, Ding Z H and Xiao J L 2014 J. Low Temp. Phys. 177 151
[19] Eerdunchaolu, Bai X F and Han C 2014 Acta Phys. Sin. 63 027501 (in Chinese)
[20] Bai X F, Wuyunqimuge, Xin W and Eerdunchaolu 2014 Acta Phys. Sin. 63 177803 (in Chinese)
[21] Zhao Y W, Han C, Xin W and Eerdunchaolu 2014 Superlattices Mi-crostruct. 74 198
[22] Lee T D, Low F M and Pines D 1953 Phys. Rev. 90 97
[23] Yildirim T and Ercelebi A 1991 J. Phys. Condens. Matter 3 1271
[24] Chatterjee A 1990 Phys. Rev. B 41 1668
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[7] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[13] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[14] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[15] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
No Suggested Reading articles found!