Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 040303    DOI: 10.1088/1674-1056/25/4/040303
GENERAL Prev   Next  

Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties

A Karimi1,3, M K Tavassoly1,2
1 Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd, Iran;
2 The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran;
3 Physics Group, Islamic Azad University of Abadeh, Fars, Iran
Abstract  In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A=f(n)a on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes-Cummings model.
Keywords:  squeezed states      deformed photon-added entangled states      entanglement      quantum polarization  
Received:  18 September 2015      Revised:  16 October 2015      Published:  05 April 2016
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.-p (Quantum optics)  
Corresponding Authors:  A Karimi, M K Tavassoly     E-mail:  amirkarimi.phy@stu.yazd.ac.ir;mktavassoly@yazd.ac.ir

Cite this article: 

A Karimi, M K Tavassoly Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties 2016 Chin. Phys. B 25 040303

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Bennett C H, Brassard G, Créeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Ekert A 1991 Phys. Rev. Lett. 67 661
[4] Barenco A, Dutch D, Ekert A and Jozsa R 1995 Phys. Rev. Lett. 74 4083
[5] Bužek V, Barranco A V and Knight P L 1992 Phys. Rev. A 45 6570
[6] Donodov V V, Malkin I A and Man'ko V I 1974 Physica 72 597
[7] Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13
[8] Sanders B C 1992 Phys. Rev. A 45 6811
[9] Yurke B and Stoler D 1987 Phys. Rev. A 35 4846
[10] Karimi A and Tavassoly M K 2015 Phys. Scr. 90 015101
[11] de Matos Filho R L and Vogel W 1996 Phys. Rev. A 54 4560
[12] Zhang Z M, Yang J and Yu Y F 2007 Chin. Phys. Lett. 24 352
[13] Kuanga L M, Zeng A H and Kuang Z H 2003 Phys. Lett. A 319 24
[14] Barnett S M and Knight P L 1985 J. Opt. Soc. Am. B 2 467
[15] Barnett S M and Knight P L 1987 J. Mod. Opt. 34 841
[16] Hong-yi F 1990 Phys. Rev. A 41 1526
[17] Stoler D 1970 Phys. Rev. D 1 3217
[18] Stoler D 1971 Phys. Rev. D 4 1935
[19] Slusher R E, Hollberg L W, Yurke B, Mertz J C and ValleySlusher J F 1985 Phys. Rev. Lett. 55 2409
[20] Wang J, Sui Q and Wang C 1995 Quantum Semiclass. Opt. 7 917
[21] Zhao L H, Yang Z Y, Zhang Z J and Hou X 2000 Acta Photon. Sin. 29 193
[22] Hou Y, Meng J D, Tian L K, Hu Y F, Wan Y and Yang Z Y 2001 Acta Photon. Sin. 30 1194
[23] Ming C S, Xu D G and An Y Y 2002 Acta Photon. Sin. 31 412
[24] Shapiro J H 1980 Opt. Lett. 5 351
[25] Righini G C, Tajani A and Cutolo A 2009 An Introduction to Optoelectronic Sensors (Singapore: World Scientific)
[26] Caves C M 1981 Phys. Rev. D 23 1693
[27] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J A 1992 J. Cryptology 5 3
[28] Muller A, Breguet J and Gisin N 1993 Europhys. Lett. 23 383
[29] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337
[30] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[31] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[32] Luis A 2002 Phys. Rev. A 66 013806
[33] Barbieri M, De Martini F, Di Nepi G, Mataloni P, De Ariano G M and Macchiavello C 2003 Phys. Rev. Lett. 91 227901
[34] Luis A 2005 Phys. Rev. A 71 063815
[35] Luis A 2007 Phys. Rev. A 75 053806
[36] Stokes G G 1852 Trans. Cambridge Philos. Soc. 9 399
[37] Glauber J 1963 Phys. Rev. 131 2766
[38] Agarwal G S, Tara K 1991 Phys. Rev. A 43 492
[39] Zavatta A, Viciani S, Bellini M 2005 Phys. Rev. A 72 023820
[40] Safaeian O and Tavassoly M K 2011 J. Phys. A: Math. Theor. 44 225301
[41] Dibakar E, Tavassoly M K and karimi A 2015 Phys. Scr. 90 085102
[42] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[43] Cummings F W 1965 Phys. Rev. A 140 1051
[44] Gerry C C and Knight P L 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press)
[45] Buck B and Sukumar C V 1981 Phys. Lett. A 81 132
[46] Agarwal G S and Singh S 1982 Phys. Rev. A 25 3195
[47] Huang C, Tang L, Kong F, Fang J and Zhou M 2006 Physica A 368 25
[48] Sukumar C V and Buck B 1984 J. Phys. A: Math. Gen. 17 877
[49] Fink J M, Goppl M, Baur M, Bianchetti R, Leek P J, Blais A and Wallraff A 2008 Nature 454 315
[50] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[51] Mann A, Sanders B C and Munro W J 1995 Phys. Rev. A 51 989
[52] Rungta P, Buzék V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315
[53] Kuang L M and Zhou L 2003 Phys. Rev. A 68 043606
[54] Wang X G 2002 J. Phys. A: Math. Gen. 35 165
[55] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[56] Agarwal G S and Biswas A 2005 J. Opt. B: Quantum Semiclass. Opt. 7 350
[57] Miry S R and Tavassoly M K 2012 J. Phys. B: At. Mol. Opt. Phys. 45 175502
[58] Collett E 1970 Am. J. Phys. 38 563
[59] Brosseau C 1998 Fundamentals of Polarized Light: A Statistical Optics Approach (New York: Wiley)
[60] Mandel L 1979 Opt. Lett. 4 205
[61] Davidovich L 1996 Rev. Mod. Phys. 68 127
[62] Paul H 1982 Rev. Mod. Phys. 54 1061
[63] Song T Q and Fan H Y 2002 J. Phys. A: Math. Gen. 35 1071
[64] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[65] Baghshahi H R, Tavassoly M K and Behjat A 2014 Chin. Phys. B 23 074203
[66] Baghshahi H R, Tavassoly M K and Behjat A 2014 Commun. Theor. Phys. 62 430
[67] Baghshahi H R and Tavassoly M K 2015 Eur. Phys. J. Plus 130 37
[68] Buck B and Sukumar C V 1981 Phys. Lett. A 81 132
[69] Sukumar C V and Buck B 1981 Phys. Lett. A 83 211
[70] Buek V 1989 Phys. Rev. A 39 3196
[71] Sudha Singh, C H Reimond Ooi, Amrita 2012 Phys. Rev. A 86 023810
[72] Gora P and Jedrzejek C 1992 Phys. Rev. A 45 6816
[73] Klimov A B and Chumakov S M 2009 A Group-Theoretical Approach to Quantum Optics (Cambridge: Cambridge University Press)
[74] Rastegarzadeh M and Tavassoly M K 2015 Phys. Scr. 90 025103
[75] Naderi M H, Soltanolkotabi M, Roknizadeh R 2005 Eur. Phys. J. D 32 397
[76] Yadollahi F, Tavassoly M K 2011 Opt. Commun. 284 608
[77] Yadollahi F, Tavassoly M K 2012 Int. J. Mod. Phys. B 26 1250027
[78] Davidovich L, Raimond J M, Brune M and Haroche S 1987 Phys. Rev. A 36 3771
[79] Sing S 1982 Phys. Rev. A 25 3206
[80] Font J L, Fernádez-Soler J J, Vilaseca R and Gauthier D J 2005 Phys. Rev. A 72 063810
[81] Shore B W and Knight P L 1993 J. Mod. Opt. 40 1195
[82] Baghshahi H R, Tavassoly M K and Behjat A 2014 Chin. Phys. B 23 074203
[83] Baghshahi H R, Tavassoly M K and Behjat A 2014 Commun. Theor. Phys. 62 430
[1] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[2] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[3] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[4] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[5] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[6] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[7] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[8] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[9] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[10] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[11] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[12] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[13] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[14] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[15] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
No Suggested Reading articles found!