Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020302    DOI: 10.1088/1674-1056/ac1330
GENERAL Prev   Next  

Channel parameters-independent multi-hop nondestructive teleportation

Hua-Yang Li(李华阳)1, Yu-Zhen Wei(魏玉震)2, Yi Ding(丁祎)1, and Min Jiang(姜敏)1,3,†
1 School of Electronics & Information Engineering, Soochow University, Suzhou 215006, China;
2 School of Information Engineering, Huzhou University, Huzhou 313000, China;
3 Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai 200240, China
Abstract  A multi-hop nondestructive teleportation scheme independent of channel parameters based on Bell pairs is presented, where the coefficients of the quantum channel are unknown to all the communication nodes. With Bell measurement and channel matching technology the unknown channel parameters can be eliminated probabilistically with the help of the intermediate nodes. Then the source node Alice can teleport an unknown state to the remote destination node Bob. In our scheme the teleportation is generalized first to the scenario independent of channel parameters, which makes the requirement of quantum channel reduced. Our scheme still preserves the initial unknown state even if this teleportation fails. Moreover, performance analysis shows that our scheme has a higher communication efficiency.
Keywords:  multi-hop quantum communication      entanglement swapping      teleportation  
Received:  09 April 2021      Revised:  16 June 2021      Accepted manuscript online:  12 July 2021
PACS:  03.67.Hk (Quantum communication)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the Tang Scholar Project of Soochow University, the National Natural Science Foundation of China (Grant No. 61873162), and the Funds from the Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network and Suzhou Key Laboratory of Advanced Optical Communication Network Technology.
Corresponding Authors:  Min Jiang     E-mail:  jiangmin08@suda.edu.cn

Cite this article: 

Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏) Channel parameters-independent multi-hop nondestructive teleportation 2022 Chin. Phys. B 31 020302

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[3] Wang T Y and Wen Q Y 2011 Chin. Phys. B 20 040307
[4] Kiktenko E O, Popov A A and Fedorov A K 2016 Phys. Rev. A 93 062305
[5] Yuan H and Yang H 2020 Int. J. Theor. Phys. 59 2639
[6] Zhou L and Sheng Y B 2016 Sci. Rep. 6 20901
[7] Gao X Q, Zhang Z C and Sheng B 2018 J. Mod. Opt. 65 6981704
[8] Wang M Y and Yan F L 2011 Chin. Phys. B 20 120309
[9] Gao X Q, Zai C, et al. 2017 J. Opt. Soc. Am. B 34 142
[10] Zhou X Z, Yu X T and Zhang Z C 2018 Int. J. Theor. Phys. 57 981
[11] Tan X Q, Zhang X Q and Fang J B 2016 Inform. Process. Lett. 116 347
[12] Sang M H 2016 Int. J. Theor. Phys. 55 1333
[13] Li M, Zhao N, Chen N, et al. 2017 Int. J. Theor. Phys. 56 2710
[14] Ramírez M D G, Falaye B J, Sun G H, et al. 2017 Front. Phys. 12 120306
[15] Zhang Z, Wang J and Sun M 2018 Int. J. Theor. Phys. 57 3605
[16] Zhang S L, Jin C H, Shi J H, et al. 2017 Chin. Phys. Lett. 34 40302
[17] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[18] Pan J W, Bouwmeester D, Weinfurter H, et al. 1998 Phys. Rev. Lett. 80 3891
[19] Yang G, Xing L, Nie M, et al. 2021 Chin. Phys. B 30 030301
[20] Yu X T, Zhang Z C and Xu J 2014 Chin. Phys. B 23 010303
[21] Wang K, Gong Y X, Yu X T and Lu S L 2014 Phys. Rev. A 90 044302
[22] Shi L H, Yu X T, Cai X F, Gong Y X and Zhang Z C 2015 Chin. Phys. B 24 050308
[23] Xiong P Y, Yu X T, Zhan H T and Zhang Z C 2016 Front. Phys. 11 18
[24] Zou Z Z, Yu X T, Gong Y X, et al. 2016 Phys. Lett. A 381 76
[25] Shi B S, Guo G C and Jiang Y K 2000 Phys. Lett. A 268 161
[26] Wang M Y and Yan F L 2010 Commun. Theor. Phys. 54 263
[27] Gao X Q, Zhang Z C, Gong Y X, Sheng B and Yu X T 2017 J. Opt. Soc. Am. B 34 142
[28] Jiang M, Li H, Zhang Z K and Zeng J 2012 Quantum Inf. Process. 11 23
[29] Roa L and Groiseau C 2015 Phys. Rev. A 91 012344
[30] Tan X Q, Zhang X Q and Song T T 2016 Int. J. Theor. Phys. 55 155
[31] Fu F X and Jiang M 2020 J. Opt. Soc. Am. B 37 233
[32] Jiang M 2014 Int. J. Theor. Phys. 53 1150
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[5] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[6] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[7] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[8] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[9] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[10] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[11] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[12] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[13] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[14] Multi-hop teleportation based on W state and EPR pairs
Hai-Tao Zhan(占海涛), Xu-Tao Yu(余旭涛), Pei-Ying Xiong(熊佩颖), Zai-Chen Zhang(张在琛). Chin. Phys. B, 2016, 25(5): 050305.
[15] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
No Suggested Reading articles found!