Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 040302    DOI: 10.1088/1674-1056/25/4/040302
GENERAL Prev   Next  

Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation

Xiang-Guo Meng(孟祥国)1,2, Ji-Suo Wang(王继锁)1,2,3, Hong-Yi Fan(范洪义)4, Cheng-Wei Xia(夏承魏)1,2
1 School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China;
2 Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China;
3 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
4 Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature.
Keywords:  Kraus operator solution      matrix representation      thermal bath      fermionic entangled state representation  
Received:  08 October 2015      Revised:  18 December 2015      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.
Corresponding Authors:  Xiang-Guo Meng     E-mail:  mengxiangguo1978@sina.com

Cite this article: 

Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏) Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation 2016 Chin. Phys. B 25 040302

[1] Haake F 1969 Z. Phys. 223 353
[2] Haake F 1973 Springer Tracts in Modern Physics 66 98
[3] Risken H 1984 The Fokker-Planck Equation: Methods of Solutions and Applications (Berlin/Heidelberg: Springer-Verlag)
[4] Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[5] Liu T K, Wu P P, Shan C J, Liu J B and Fan H Y 2015 Chin. Phys. B 24 090302
[6] Xu X L, Li H Q and Fan H Y 2015 Chin. Phys. B 24 070306
[7] Gardner C W and Zoller P 2000 Quantum Noise (Berlin: Springer-Verlag)
[8] Fan H Y and Hu L Y 2008 Opt. Commun. 281 5571
[9] Fan H Y and Wang J S 2007 Commun. Theor. Phys. 48 245
[10] Nielsen M A and Chuang I L 2000 Computation and Quantum Information (Cambridge: Cambridge University Press)
[11] Kraus K 2008 State, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture Notes in Physics (Berlin/New York: Springer-Verlag)
[12] Hellwig K E and Kraus K 1969 Commun. Math. Phys. 11 214
[1] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[2] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[3] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[4] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[5] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[6] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[7] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[8] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[11] A novel demodulation method for transmission using nitrogen-vacancy-based solid-state quantum sensor
Ruixin Bai(白瑞昕), Xinyue Zhu(朱欣岳), Fan Yang(杨帆), Tianran Gao(高天然), Ziran Wang(汪子然), Linyan Yu(虞林嫣), Jinfeng Wang(汪晋锋), Li Zhou(周力), and Guanxiang Du(杜关祥). Chin. Phys. B, 2022, 31(7): 074203.
[12] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[13] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[14] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[15] Protection of entanglement between two V-atoms in a multi-cavity coupling system
Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄). Chin. Phys. B, 2022, 31(1): 010301.
No Suggested Reading articles found!