Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027303    DOI: 10.1088/1674-1056/25/2/027303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor

Jun Luo(罗俊)1, Sheng-Lei Zhao(赵胜雷)1, Min-Han Mi(宓珉瀚)1, Wei-Wei Chen(陈伟伟)2, Bin Hou(侯斌)2, Jin-Cheng Zhang(张进成)1, Xiao-Hua Ma(马晓华)1,2, Yue Hao(郝跃)1
1. Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2. School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
Abstract  The effects of gate length LG on breakdown voltage VBR are investigated in AlGaN/GaN high-electron-mobility transistors (HEMTs) with LG = 1 μm~ 20 μm. With the increase of LG, VBR is first increased, and then saturated at LG=3 μm. For the HEMT with LG=1 μm, breakdown voltage VBR is 117 V, and it can be enhanced to 148 V for the HEMT with LG = 3 μm. The gate length of 3 μm can alleviate the buffer-leakage-induced impact ionization compared with the gate length of 1 μm, and the suppression of the impact ionization is the reason for improving the breakdown voltage. A similar suppression of the impact ionization exists in the HEMTs with LG>3 μm. As a result, there is no obvious difference in breakdown voltage among the HEMTs with LG = 3 μm~ 20 μm, and their breakdown voltages are in a range of 140 V-156 V.
Keywords:  AlGaN/GaN high-electron-mobility transistors (HEMTs)      breakdown voltage      gate length  
Received:  15 August 2015      Revised:  02 October 2015      Published:  05 February 2016
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61204085).
Corresponding Authors:  Yue Hao     E-mail:  yhao@xidian.edu.cn

Cite this article: 

Jun Luo(罗俊), Sheng-Lei Zhao(赵胜雷), Min-Han Mi(宓珉瀚), Wei-Wei Chen(陈伟伟), Bin Hou(侯斌), Jin-Cheng Zhang(张进成), Xiao-Hua Ma(马晓华), Yue Hao(郝跃) Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor 2016 Chin. Phys. B 25 027303

[1] Lee H S, Piedra D, Sun M, Gao X, Guo S and Palacios T 2012 IEEE Electron Dev. Lett. 33 982
[2] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Dev. Lett. 25 117
[3] Huang X, Liu Z, Li Q and Lee F C 2014 IEEE Trans. Power Electron. 29 2453
[4] Xing H L, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Dev. Lett. 25 161
[5] Yang L, Hu G Z, Hao Y, Ma X H, Quan S, Yang L Y and Jiang S G 2010 Chin. Phys. B 19 047301
[6] Zhao S L, Chen W W, Yue T, Wang Y, Luo J, Mao W, Ma X H and Hao Y 2013 Chin. Phys. B 22 117307
[7] Zhou Q, Huang S, Chen H, Zhou C, Feng Z, Cai S and Chen K J 2011 IEEE International Electron Devices Meeting, December 5-7, 2011, Washington, USA, p. 33.4.1
[8] Lee D S, Laboutin O, Cao Y, Johnson W, Beam E, Ketterson A, Schuette M, Saunier P and Palacios T 2012 IEEE Electron Dev. Lett. 33 976
[9] Yue Y, Hu Z, Guo J, Sensale-Rodriguez B, Li G, Wang R, Faria F, Fang T, Song B, Gao X, Guo S, Kosel T, Snider G, Fay P, Jena D and Xing H 2012 IEEE Electron Dev. Lett. 33 988
[10] Downey B P, Meyer D J, Katzer D S, Roussos J A, Pan M and Gao X 2014 IEEE Electron Dev. Lett. 35 527
[11] Zhao S L, Hou B, Chen W W, Mi M H, Zheng J X, Zhang J C, Ma X H and Hao Y 2016 IEEE Trans. Power Electron. 31 1517
[1] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[2] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[3] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[4] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[5] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
[6] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[7] Stacked lateral double-diffused metal-oxide-semiconductor field effect transistor with enhanced depletion effect by surface substrate
Qi Li(李琦), Zhao-Yang Zhang(张昭阳), Hai-Ou Li(李海鸥), Tang-You Sun(孙堂友), Yong-He Chen(陈永和), Yuan Zuo(左园). Chin. Phys. B, 2019, 28(3): 037201.
[8] 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor
Sheng-Lei Zhao(赵胜雷), Zhi-Zhe Wang(王之哲), Da-Zheng Chen(陈大正), Mao-Jun Wang(王茂俊), Yang Dai(戴扬), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(2): 027301.
[9] A snapback-free TOL-RC-LIGBT with vertical P-collector and N-buffer design
Weizhong Chen(陈伟中), Yao Huang(黄垚), Lijun He(贺利军), Zhengsheng Han(韩郑生), Yi Huang(黄义). Chin. Phys. B, 2018, 27(8): 088501.
[10] Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions
Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(4): 047305.
[11] Closed-form breakdown voltage/specific on-resistance model using charge superposition technique for vertical power double-diffused metal-oxide-semiconductor device with high-κ insulator
Xue Chen(陈雪), Zhi-Gang Wang(汪志刚), Xi Wang(王喜), James B Kuo. Chin. Phys. B, 2018, 27(4): 048502.
[12] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[13] Numerical and experimental study of the mesa configuration in high-voltage 4H-SiC PiN rectifiers
Xiao-Chuan Deng(邓小川), Xi-Xi Chen(陈茜茜), Cheng-Zhan Li(李诚瞻), Hua-Jun Shen(申华军), Jin-Ping Zhang(张金平). Chin. Phys. B, 2016, 25(8): 087201.
[14] Improving breakdown voltage performance of SOI power device with folded drift region
Qi Li(李琦), Hai-Ou Li(李海鸥), Ping-Jiang Huang(黄平奖), Gong-Li Xiao(肖功利), Nian-Jiong Yang(杨年炯). Chin. Phys. B, 2016, 25(7): 077201.
[15] Ultra-low specific on-resistance high-voltage vertical double diffusion metal-oxide-semiconductor field-effect transistor with continuous electron accumulation layer
Da Ma(马达), Xiao-Rong Luo(罗小蓉), Jie Wei(魏杰), Qiao Tan(谭桥), Kun Zhou(周坤), Jun-Feng Wu(吴俊峰). Chin. Phys. B, 2016, 25(4): 048502.
No Suggested Reading articles found!