Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070309    DOI: 10.1088/1674-1056/24/7/070309
GENERAL Prev   Next  

Direct measurement of the concurrence for two-qubit electron spin entangled pure state based on charge detection

Liu Jiong (刘炯)a b, Zhou Lan (周澜)a c, Sheng Yu-Bo (盛宇波)a b
a Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
b Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
c College of Mathematics and Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  

We propose a protocol for directly measuring the concurrence of a two-qubit electronic pure entangled state. To complete this task, we first design a parity-check measurement (PCM) which is constructed by two polarization beam splitters (PBSs) and a charge detector. By using the PCM for three rounds, we can achieve the concurrence by calculating the total probability of picking up the odd parity states from the initial states. Since the conduction electron may be a good candidate for the realization of quantum computation, this protocol may be useful in future solid quantum computation.

Keywords:  quantum computation      parity check measurement      entanglement  
Received:  06 January 2015      Revised:  19 January 2015      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Qing Lan Project in Jiangsu Province, China, and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Sheng Yu-Bo     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Liu Jiong (刘炯), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波) Direct measurement of the concurrence for two-qubit electron spin entangled pure state based on charge detection 2015 Chin. Phys. B 24 070309

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Su X L 2014 Chin. Sci. Bull. 59 1083
[4] Zhao S M, Gong L Y, Li Y Q, Yang H, Sheng Y B and Cheng W W 2013 Chin. Phys. Lett. 30 060305
[5] Zou Y Y, Zou X J, Tian P G and Wang Y J 2013 Chin. Phys. B 22 010305
[6] Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 100304
[7] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[8] Long G L and Liu X 2002 Phys. Rev. A 65 032302
[9] Chang Y, Xu C X, Zhang S B and Yan L 2013 Chin. Sci. Bull. 58 4571
[10] Chang Y, Xu C X, Zhang S B and Yan L 2014 Chin. Sci. Bull. 59 2541
[11] Chang Y, Zhang S B and Yan L L 2013 Chin Phys. Lett. 30 090301
[12] Hong C H, Heo J, Lim J I and Yang H J 2014 Chin. Phys. B 23 090309
[13] Chang Y, Zhang S B, Yan L L and Sheng Z W 2013 Chin. Phys. Lett. 30 050301
[14] Gu B, Huang Y G, Fang X and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
[15] Gu B, Xu F, Ding L G and Zhang Y A 2012 Int. J. Theor. Phys. 51 3559
[16] Liu Y 2013 Chin. Sci. Bull. 58 2927
[17] Liu Y and Ou-Yang X P 2013 Chin. Sci. Bull. 58 2329
[18] Zheng C and Long G F 2014 Sci. Chin.: Phys. Mecha. Astro. 57 1238
[19] Su X L, Jia X J, Xie C D and Peng K C 2014 Sci. Chin.: Phys. Mecha. Astro. 57 1210
[20] Heilmann R, Gräfe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96
[21] Xu J S and Li C F 2015 Sci. Bull. 60 141
[22] Gühne O, Hyllus P, Bruss D, Ekret A, Lewenstein M, Macchiavello C and Sanpera A 2002 Phys. Rev. A 66 062305
[23] Salles A, de Melo F, Retamal J C, de Matos Filho R L and Zagury N 2006 Phys. Rev. A 74 060303(R)
[24] Horodecki P 2003 Phys. Rev. Lett. 90 167901
[25] Thew R T, Nemoto K, White A G and Munro W J 2002 Phys. Rev. A 66 012303
[26] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[27] Kiesel N, Schmid C, Tóth G, Solano E and Weinfurter H 2007 Phys. Rev. Lett. 98 063604
[28] White A G, James D F V, Eberhard P H and Kwiat P G 1999 Phys. Rev. Lett. 83 3103
[29] Rehacek J, Englert B G and Kaszlikowski D 2004 Phys. Rev. A 70 052321
[30] Ling A, Soh K P, Lamas-Linares A and Kurtsiefer C 2006 Phys. Rev. A 74 022309
[31] Tóthl G and Gühne O 2005 Phys. Rev. Lett. 94 060501
[32] Bovino F A, Castagnoli G, Ekert A, Horodecki P, Alves C M and Sergienko A V 2005 Phys. Rev. Lett. 95 240407
[33] Wang H F and Zhang S 2009 Chin. Phys. B 18 2642
[34] Mohammadi M, Brańczyk A M and James D F V 2013 Phys. Rev. A 87 012117
[35] Lewenstein M, Kraus B, Cirac J I and Horodecki P 2000 Phys. Rev. A 62 052310
[36] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[37] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[38] Wootters W K 1998 Phys. Rev. Lett. 80 2445
[39] Wootters W K 2001 Quant. Inf. Comput. 1 27
[40] Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022
[41] Romero G, López C E, Lastra F, Solano E and Retamal J C 2007 Phys. Rev. A 75 032303
[42] Lee S M, Ji S W, Lee H W and Zubairy M S 2008 Phys. Rev. A 77 040301(R)
[43] Zhang L H, Yang M and Cao Z L 2013 Phys. Lett. A 377 1421
[44] Zhang L H, Yang Q, Yang M, Song W and Cao Z L 2013 Phys. Rev. A 88 062342
[45] Zhou L and Sheng Y B 2014 Phys. Rev. A 90 024301
[46] Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
[47] Field M, Smith C G, Pepper M, Pitchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1311
[48] Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301
[49] Sheng Y B, Deng F G and Long G L 2011 Phys. Lett. A 375 396
[50] Li T, Ren B C, Wei H R, Hua M and Deng F G 2013 Quantum. Inf. Process. 12 855
[51] Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
[52] Ren B C, Hua M, Li T, Du F F and Deng F G 2012 Chin. Phys. B 21 090303
[53] Zhou L 2013 Quantum. Inf. Process. 12 2087
[54] Liu J, Zhao S Y, Zhou L and Sheng Y B 2014 Chin. Phys. B 23 020313
[55] Ren B C, Wei H R, Li T, Huang M and Deng F G 2014 Quant. Inf. Process. 13 825
[56] Gu B, Huang Y and Wang H 2014 Int. J. Theor. Phys. 53 1337
[57] Sheng Y B, Feng Z F, Ou-Yang Y, Qu C C and Zhou L 2014 Chin. Phys. Lett. 31 050303
[58] Zhang X L, Feng M and Gao K L 2006 Phys. Rev. A 73 014301
[59] Ionicioiu R 2007 Phys. Rev. A 75 032339
[60] Ji Y Q, Jin Z, Zhu A D, Wang H F and Zhang S 2014 Chin. Phys. B 23 050306
[61] Wang C, He L Y, Zhang Y, Ma H Q and Zhang R 2013 Sci. Chin.: Phys. Mecha. Astro. 56 2054
[62] Chiu Y J, Chen X and Chuang I L 2013 Phys. Rev. A 87 012305
[63] Ionicioiu R and D'Amico I 2003 Phys. Rev. B 67 041307(R)
[64] Elzerman J M, Hanson R, van Beveren W L H, Vandersypen L M K and Kouwenhoven L P 2004 Appl. Phys. Lett. 84 4617
[65] Shaner E A and Lyon S A 2004 Phys. Rev. Lett. 93 037402
[1] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[5] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[6] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[7] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[8] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[9] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[10] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[11] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[12] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[13] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!