Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 057702    DOI: 10.1088/1674-1056/24/5/057702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Threshold switching uniformity in In2Se3 nanowire-based phase change memory

Chen Jiana b, Du Gangb, Liu Xiao-Yanb
a Shenzhen Graduate School, Peking University, Shenzhen 518055, China;
b Institute of Microelectronics, Peking University, Beijing 100871, China
Abstract  The uniformity of threshold voltage and threshold current in the In2Se3 nanowire-based phase change memory (PCM) devices is investigated. Based on the trap-limited transport model, amorphous layer thickness, trap density, and trap depth are considered to clarify their influences upon the threshold voltage and threshold current through simulations.
Keywords:  phase change memory      nanowire      trap-limited model      threshold voltage  
Received:  14 November 2014      Revised:  09 December 2014      Published:  05 May 2015
PACS:  77.80.Fm (Switching phenomena)  
  85.30.-z (Semiconductor devices)  
  78.66.Jg (Amorphous semiconductors; glasses)  
  85.30.-z (Semiconductor devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00604).
Corresponding Authors:  Liu Xiao-Yan     E-mail:  xyliu@ime.pku.edu.cn
About author:  77.80.Fm; 85.30.-z; 78.66.Jg; 85.30.-z

Cite this article: 

Chen Jian, Du Gang, Liu Xiao-Yan Threshold switching uniformity in In2Se3 nanowire-based phase change memory 2015 Chin. Phys. B 24 057702

[1] Burr G W, Kurdi B N, Scott J C, Lam C H, Gopalakrishnan K and Shenoy R S 2008 IBM Journal of Research and Development 52 449
[2] Lam C H 2010 Solid-State and Integrated Circuit Technology, November 1-4, 2010, Shanghai, China, p. 1080
[3] Freitas R F and Wilcke W W 2008 IBM Journal of Research and Development 52 439
[4] Marinella M 2013 Aerospace Conference, March 2-9, 2013, Big Sky, USA, p. 1
[5] Burr G W, Breitwisch M J, Franceschini M, Garetto D, Gopalakrishnan K and Jackson B 2010 Journal of Vacuum Science & Technology 28 223
[6] Wong H S P, Raoux S, SangBum K, Jiale L, Reifenberg J P and Rajendran B 2010 IEEE Proc. 98 2201
[7] Lai S and Lowrey T 2001 Electron Devices Meeting, December 2-5, 2001, Washington, DC, USA, p. 36.5.1
[8] Raoux S, Burr G W, Breitwisch M J, Rettner C T, Chen Y C and Shelby R M 2008 IBM Journal of Research and Development 52 465
[9] Pirovano A, Lacaita A L, Benvenuti A, Pellizzer F, Hudgens S and Bez R 2003 Electron Devices Meeting, December 8-10, 2003, Washington, DC, USA, p. 29.6.1
[10] Russo U, Ielmini D, Redaelli A and Lacaita A L 2008 IEEE Trans. Electron Devices 55 506
[11] Redaelli A, Pirovano A, Pellizzer F, Lacaita A L, Ielmini D and Bez R 2004 IEEE Electron Dev. Lett. 25 684
[12] Redaelli A, Pirovano A, Benvenuti A and Lacaita A L 2008 J. Appl. Phys. 103 111101
[13] Youngdon C, Ickhyun S, Mu-Hui P, Hoeju C, Sanghoan C and Beakhyoung C 2012 Solid-State Circuits Conference Digest of Technical Papers, February 19-23, 2012, San Francisco, USA, p. 46
[14] Kang D H, Ahn D H, Kwon M H, Kwon H S, Kim K B and Lee K S 2004 Jpn. J. Appl. Phys. 43 5243
[15] Pirovano A, Lacaita A L, Benvenuti A, Pellizzer F and Bez R 2004 IEEE Trans. Electron Devices 51 452
[16] Ovshinsk Sr 1968 Phys. Rev. Lett. 21 1450
[17] Xuhui S, Bin Y, Ng G, Meyyappan M, Sanghyun J and Janes D B 2008 IEEE Trans. Electron Devices 55 3131
[18] Bin Y, Xuhui S, Sanghyun J, Janes D B and Meyyappan M 2008 IEEE Trans. Nanotechnol. 7 496
[19] Jie L, Bin Y and Anantram M P 2011 IEEE Electron Dev. Lett. 32 1340
[20] Bo J, Jungsik K, Daegun K, Meyyappan M and Jeong-Soo L 2013 13th IEEE Conference on Nanotechnology, Auguest 5-8, 2013, Beijing, China, p. 849
[21] Yu B, Ju S, Sun X, Ng G, Nguyen T D, Meyyappan M and Janes D B 2007 Appl. Phys. Lett. 91 133119
[22] Ielmini D and Zhang Y 2007 J. Appl. Phys. 102 054517
[23] Shih Y H, Lee M H, Breitwisch M, Cheek R, Wu J Y and Rajendran B 2009 Electron Devices Meeting, December 7-9, 2009, Baltimore, USA, p. 31.7.1
[24] SangBum K, Byoung-Jae B, Yuan Z, Jeyasingh R G D, Youngkuk K and In-Gyu B 2011 IEEE Trans. Electron Devices 58 1483
[25] Ielmini D and Zhang Y 2006 Electron Devices Meeting, December 11-13, 2006. San Francisco, USA, p. 1
[26] Jeyasingh R G D, Kuzum D and Wong H S P 2011 IEEE Trans. Electron Devices 58 4370
[1] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[2] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[3] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[4] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[5] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[6] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[7] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[8] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[9] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[10] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[11] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[12] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[13] Semiconductor-metal transition in GaAs nanowires under high pressure
Yi-Lan Liang(梁艺蓝), Zhen Yao(姚震), Xue-Tong Yin(殷雪彤), Peng Wang(王鹏), Li-Xia Li(李利霞), Dong Pan(潘东), Hai-Yan Li(李海燕), Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰), Jian-Hua Zhao(赵建华). Chin. Phys. B, 2019, 28(7): 076401.
[14] Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector
Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2019, 28(7): 078502.
[15] Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor
Ya-Mei Dou(窦亚梅), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Xiao-Song Zhao(赵晓松), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(6): 066804.
No Suggested Reading articles found!