Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117405    DOI: 10.1088/1674-1056/24/11/117405
Special Issue: TOPICAL REVIEW — Interface-induced high temperature superconductivity
TOPICAL REVIEW—Interface-induced high temperature superconductivity Prev   Next  

What makes the Tc of FeSe/SrTiO3 so high?

Dung-Hai Leea b
a Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA;
b Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Abstract  

This paper reviews some of the recent progresses in the study of high temperature superconductivity in the interface between a single unit cell FeSe and SrTiO3. It offers the author’s personal view of why Tc is high and how to further increase it.

Keywords:  high      temperature      superconductivity  
Received:  12 August 2015      Revised:  10 October 2015      Accepted manuscript online: 
PACS:  74.20.Mn (Nonconventional mechanisms)  
  74.25.Gz (Optical properties)  
  74.72.-h (Cuprate superconductors)  
Fund: 

Project supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (Grant No. DE-AC02-05CH11231).

Corresponding Authors:  Dung-Hai Lee     E-mail:  dunghai@berkeley.edu

Cite this article: 

Dung-Hai Lee What makes the Tc of FeSe/SrTiO3 so high? 2015 Chin. Phys. B 24 117405

[1] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[2] Kamihara Y, Hidenori H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012
[3] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[4] Wang Q Y, Li Z, ZhangWH, Zhang Z C, Zhang J S, LiW, Ding H, Ou Y B, Deng P and Chang K 2012 Chin. Phys. Lett. 29 037402
[5] Liu D, Zhang W, Mou D, et al., 2012 Nat. Commun. 3 931
[6] He S, He J, Zhang W, et al., 2013 Nat. Mater. 12 605
[7] Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B and Feng D 2013 Nat. Mater. 12 634
[8] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C,Wen C H P, Song Q, Zhang T, Xie B P, Gong X G and Feng D L 2014 Nat. Commun. 5 5044
[9] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, LiW, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature 515 245
[10] Presentation byWang Y Y at the 2015 Superconductivity Gordon Conference
[11] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285
[12] Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S and Feng D L 2011 Nat. Mater. 10 273
[13] Mou D, Liu S, Jia X, et al., 2011 Phys. Rev. Lett. 106 107001
[14] Lu X F,Wang N Z,Wu H,Wu Y P, Zhao D, Zeng X Z, Luo X G,Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
[15] Zhao L, Liang A, Yuan D, et al., 2015 arXiv:1505.06361 [condmat. supr-con]
[16] Miyata, Y, Nakayama K, Sugawara K, Sato T and Takahashi T 2015 Nat. Mater. 14 775
[17] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C and Xue Q K 2011 Phys. Rev. B 84 020503
[18] Turner D W 1970 Phil. Trans. Roy. Soc. Lond. A 268 7
[19] Choudhury N, Walter E J, Kolesnikov A I and Loong C K 2008 Phys. Rev. B 77 134111
[20] Lasotaa C,Wang C Z, Yua R and Krakauera H 1997 Ferroelectrics 194 109
[21] Neutron W G 1972 J. Phys. C: Solid State Phys. 5 2711
[22] Wang Z, McKeown W S, Tamai A, et al., 2015 arXiv:1506.01191 [cond-mat.str-el]
[23] Yi M, Lu D, Chu J H, et al., 2011 PNAS 108 6878
[24] Watson M D, et al., 2015 Phys. Rev. B 91 155106
[25] Zhang Y, et al., private communication.
[26] Li W et al, 2015 arXiv: 1509.01892
[27] Bendele M, Ichsanow A, Pashkevich Y, Keller L, Strässle Th, Gusev A, Pomjakushina E, Conder K, Khasanov R and Keller H 2012 Phys. Rev. B 85 064517
[28] Terashima T, Kikugawa N, Kasahara S, et al., 2015 J. Phys. Soc. Jpn. 84 063701
[29] Fan Q, Zhang W H, Liu X, Yan Y J, Ren M Q, Peng R, Xu H C, Xie B P, Hu J P, Zhang T and Feng D L 2015 Nat. Phys.
[30] Cai P, Ruan W, Zhou X, Ye C, Wang A, Chen X, Lee D H and Wang Y 2014 Phys. Rev. Lett. 112 127001
[31] Kuo H H, Chu J H, Kivelson S A and Fisher I R 2015 arXiv:1503.00402 [cond-mat.supr-con]
[32] Zhang Y, et al., to be publsihed
[33] Davis J C and Lee D H 2013 PNAS 110 17623
[34] Coh S, et al., to be published
[35] Hamlin J J, Baumbach R E, Zhang L, Singh D J, MapleMB and Basov D N 2009 Nat. Phys. 5 647
[36] Yin Z P, Haule K and Kotliar G 2011 Nat. Mater. 10 932
[37] Gretarsson, Lupascu A and Kim J 2011 Phys. Rev. B 84 100509
[38] Wang F, Kivelson S and Lee D H Nat. Phys.
[1] Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna
Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫). Chin. Phys. B, 2021, 30(6): 064101.
[2] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[3] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[4] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[5] Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate
Yi-Yan Yang(杨佚沿), Cheng-Min Zhang(张承民), Jian-Wei Zhang(张见微), and De-Hua Wang (王德华). Chin. Phys. B, 2021, 30(6): 068703.
[6] Dynamics of high-frequency modulated waves in a nonlinear dissipative continuous bi-inductance network
S M Ngounou and F B Pelap. Chin. Phys. B, 2021, 30(6): 060504.
[7] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[8] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[9] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[10] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[11] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[12] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[13] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[14] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[15] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
No Suggested Reading articles found!