Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 096803    DOI: 10.1088/1674-1056/23/9/096803
RAPID COMMUNICATION Prev   Next  

Influence of reaction parameters on synthesis of high-quality single-layer graphene on Cu using chemical vapor deposition

Yang He, Shen Cheng-Min, Tian Yuan, Wang Gao-Qiang, Lin Shao-Xiong, Zhang Yi, Gu Chang-Zhi, Li Jun-Jie, Gao Hong-Jun
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Large-area monolayer graphene samples grown on polycrystalline copper foil by thermal chemical vapor deposition with differing CH4 flux and growth time are investigated by Raman spectra, scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The defects, number of layers, and quality of graphene are shown to be controllable through tuning the reaction conditions: ideally to 2-3 sccm CH4 for 30 minutes.
Keywords:  graphene      chemical vapor deposition      Raman spectra  
Received:  23 April 2014      Revised:  06 May 2014      Published:  15 September 2014
PACS:  68.65.Pq (Graphene films)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB933604, 2010CB923004, and 2009CB929103), the National Natural Science Foundation of China, and the Chinese Academy of Sciences.
Corresponding Authors:  Gao Hong-Jun     E-mail:  hjgao@iphy.ac.cn

Cite this article: 

Yang He, Shen Cheng-Min, Tian Yuan, Wang Gao-Qiang, Lin Shao-Xiong, Zhang Yi, Gu Chang-Zhi, Li Jun-Jie, Gao Hong-Jun Influence of reaction parameters on synthesis of high-quality single-layer graphene on Cu using chemical vapor deposition 2014 Chin. Phys. B 23 096803

[1] Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Jiang Z, Zhang Y, Tan Y W, Stormer H L and Kim P 2007 Solid State Commun. 143 14
[4] Xu D, Ivan S, Fabian D, Adina L and Eva Y A 2009 Nature 462 192
[5] Lee C G, Wei X D, Kysar J W and Hone J 2008 Science 321 385
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[7] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[8] Bolotina K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[9] Xu D, Ivan S, Anthony B and Eva Y A 2008 Nat. Nanotechnol. 3 491
[10] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A 2006 Science 312 1191
[11] Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C and Gao H J 2012 Appl. Phys. Lett. 100 093101
[12] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
[13] Yang W, Chen G R, Shi Z W, Liu C C, Zhang L C, Xie G B, Cheng M, Wang D M, Yang R, Shi D X, Watanabe K J, Taniguchi T, Yao Y G, Zhang Y B and Zhang G Y 2013 Nat. Mater. 12 792
[14] Huang L, Pan Y, Pan L D, Gao M, Xu W X, Que Y D, Zhou H T, Wang Y L, Du S X and Gao H J 2011 Appl. Phys. Lett. 99 162107
[15] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Roff R S 2009 Science 324 1312
[16] Wang X B, You H J, Liu F M, Li M J, Wan L, Li S Q, Li Q, Xu Y, Tian R, Yu Z Y, Xiang D and Cheng J 2009 Chem. Vapor Deposition 15 53
[17] Pan Y, Gao M, Huang L, Liu F and Gao H J 2009 Appl. Phys. Lett. 95 093106
[18] Yu Q K, Lian J, Siriponglert S, Li H, Chen Y P and Pei S S 2008 Appl. Phys. Lett. 93 113103
[19] Bhaviripudi S, Jia X T, Dresselhaus M S and Kong J 2010 Nano Lett. 10 4128
[20] Gao L B, Ren W C, Zhao J P, Ma L P, Chen Z P and Cheng H M 2010 Appl. Phys. Lett. 97 183109
[21] Wu B, Geng D C, Guo Y L, Huang L P, Xue Y Z, Zheng J, Chen J Y, Yu G, Liu Y Q, Jiang L and Hu W P 2011 Adv. Mater. 23 3522
[22] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
[23] Li X S, Cai W W, Colombo L and Ruoff R S 2009 Nano Lett. 9 4268
[24] Ni Z H, Wang H M, Ma Y, Kasim J, Wu Y H and Shen Z X 2008 ACS Nano 2 1033
[25] Berciaud S, Ryu S, Brus L E and Heinz T F 2009 Nano Lett. 9 346
[1] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[2] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[3] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[4] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[5] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[6] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[7] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[8] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[9] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[10] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[11] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[12] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[13] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[14] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[15] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
No Suggested Reading articles found!