Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077101    DOI: 10.1088/1674-1056/23/7/077101

Interaction and spin-orbit effects on a kagome lattice at 1/3 filling

Liu Hai-Di (刘海迪), Chen Yao-Hua (陈耀桦), Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Wu Jian-Hua (武建华)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We investigate the competing effects of spin-orbit coupling and electron-electron interaction on a kagome lattice at 1/3 filling. We apply the cellular dynamical mean-field theory and its real-space extension combined with the continuous time quantum Monte Carlo method, and obtain a phase diagram including the effects of the interaction and the spin-orbit coupling at T=0.1t, where T is the temperature and t is the hopping energy. We find that without the spin-orbit coupling, the system is in a semi-metal phase stable against the electron-electron interaction. The presence of the spin-orbit coupling can induce a topological non-trivial gap and drive the system to a topological insulator, and as the interaction increases, a larger spin-orbit coupling is required to reach the topological insulating phase.
Keywords:  kagome lattice      spin-orbit coupling      Hubbard interaction  
Received:  20 January 2014      Revised:  19 February 2014      Accepted manuscript online: 
PACS:  71.10.-w (Theories and models of many-electron systems)  
  05.30.Rt (Quantum phase transitions)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921502 and 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 61227902, 61378017, and 11311120053).
Corresponding Authors:  Liu Hai-Di     E-mail:
About author:  71.10.-w; 05.30.Rt; 71.10.Fd

Cite this article: 

Liu Hai-Di (刘海迪), Chen Yao-Hua (陈耀桦), Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Wu Jian-Hua (武建华) Interaction and spin-orbit effects on a kagome lattice at 1/3 filling 2014 Chin. Phys. B 23 077101

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[4] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[5] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[6] Xiu F X and Zhao T T 2013 Chin. Phys. B 22 96104
[7] Ding Y, Shen J, Pang Y, Liu G T, Fan J, Ji Z Q, Yang C L and Lü L 2013 Acta Phys. Sin. 62 167401 (in Chinese)
[8] Guo J H, Qiu F, Zhang Y, Deng H Y, Hu G J, Li X N, Yu G L and Dai N 2013 Chin. Phys. Lett 30 106801
[9] Wu C J, Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106401
[10] Xu C K and Moore J E 2006 Phys. Rev. B 73 045322
[11] Yu S L, Xie X C and Li J X 2011 Phys. Rev. Lett. 107 010401
[12] Hohenadler M, Lang T C and Assaad F F 2011 Phys. Rev. Lett. 106 100403
[13] Lee D H 2011 Phys. Rev. Lett. 107 166806
[14] Wu W, Rachel S, Liu W M and Le Hur K 2012 Phys. Rev. B 85 205102
[15] Yuan J, Gao J H, Chen W Q, Ye F, Zhou Y and Zhang F C 2012 Phys. Rev. B 86 104505
[16] Hohenadler M and Assaad F F 2013 J. Phys.: Condens. Matter 25 143201
[17] Zheng D, Zhang G M and Wu C J 2011 Phys. Rev. B 84 205121
[18] Maciejko J, Chua V and Fiete G A 2014 Phys. Rev. Lett. 112 016404
[19] Wen X G 2002 Phys. Rev. B 65 165113
[20] Colman R H, Sinclair A and Wills A S 2010 Chem. Mater. 22 5774
[21] Fåk B, Kermarrec E, Messio L, Bernu B, Lhuillier C, Bert F, Mendels P, Koteswararao B, Bouquet F, Ollivier J, Hillier A D, Amato A, Colman R H and Wills A S 2012 Phys. Rev. Lett. 109 037208
[22] Yan S M, Huse D A and White S R 2011 Science 332 1173
[23] Nishimoto S, Nakamura M, O'Brien A and Fulde P 2010 Phys. Rev. Lett. 104 196401
[24] Yamada A, Seki K, Eder R and Ohta Y 2011 Phys. Rev. B 83 195127
[25] Ohashi T, Kawakami N and Tsunetsugu H 2006 Phys. Rev. Lett. 97 066401
[26] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[27] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[28] Liu G C, Zhu S L, Jiang S J, Sun F D and Liu W M 2010 Phys. Rev. A 82 053605
[29] Wen J, Rüegg A, Wang C C J and Fiete G A 2010 Phys. Rev. B 82 075125
[30] Raghu S, Qi X L, Honerkamp C and Zhang S C 2008 Phys. Rev. Lett. 100 156401
[31] Zhang Y, Ran Y and Vishwanath A 2009 Phys. Rev. B 79 245331
[32] Kotliar G, Savrasov S Y, Pálsson G and Biroli G 2001 Phys. Rev. Lett. 87 186401
[33] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[34] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
[35] Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
[36] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[37] Chen Y H, Tao H S, Yao D X and Liu W M 2012 Phys. Rev. Lett. 108 246402
[38] Chen Y H, Wu W, Tao H S and Liu W M 2010 Phys. Rev. A 82 043625
[39] Wu W, Chen Y H, Tao H S, Tong N H and Liu W M 2010 Phys. Rev. B 82 245102
[40] Mand J and Gubernatis J E 1996 Physics Reports 269 133
[1] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[2] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[3] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[4] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[5] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[8] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[9] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[10] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[11] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[14] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[15] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
No Suggested Reading articles found!