Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048103    DOI: 10.1088/1674-1056/23/4/048103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An optimized, sensitive and stable reduced graphene oxide-gold nanoparticle-luminol-H2O2 chemiluminescence system and its potential analytical application

Wang Wen-Shuoa, He Da-Weia, Wang Ji-Hongb, Duan Jia-Huaa, Peng Hong-Shanga, Wu Hong-Penga, Fu Minga, Wang Yong-Shenga, Zhang Xi-Qinga
a Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China;
b School of Science, China University of Petroleum, Beijing 102249, China
Abstract  The chemiluminescence (CL) performance of luminol is improved using reduced graphene oxide/gold nanoparticle (rGO-AuNP) nano-composites as catalyst. To prepare this catalyst, we propose a linker free, one-step method to in-situ synthesize rGO-AuNP nano-composites. Various measurements are utilized to characterize the resulting rGO-AuNP samples, and it is revealed that rGO could improve the stability and conductivity. Furthermore, we investigate the CL signals of luminal catalyzed by rGO-AuNP. Afterwards, the size effect of particle and the assisted enhancement effect of rGO are studied and discussed in detail. Based on the discussion, an optimal, sensitive and stable rGO-AuNP-luminon-H2O2 CL system is proposed. Finally, we utilize the system as a sensor to detect hydrogen peroxide and organic compounds containing amino, hydroxyl, or thiol groups. The CL system might provide a more attractive platform for various analytical devices with CL detection in the field of biosensors, bioassays, and immunosensors.
Keywords:  graphene      nanoparticles      chemiluminescence      biosensers  
Received:  12 September 2013      Revised:  30 October 2013      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.60.Ps (Chemiluminescence)  
  87.85.fk (Biosensors)  
Fund: Project supported by the National Key Basic Research Program, China (Grant Nos. 2011CB932700 and 2011CB932703), the National Natural Science Foundation of China (Grant Nos. 61378073, 61335006, 91123025, and 61077044), and the Beijing Natural Science FundProject, China (Grant No. 4132031).
Corresponding Authors:  He Da-Wei, Zhang Xi-Qing     E-mail:  dwhe@bjtu.edu.cn;xqzhang@bjtu.edu.cn
About author:  81.05.ue; 78.67.Bf; 78.60.Ps; 87.85.fk

Cite this article: 

Wang Wen-Shuo, He Da-Wei, Wang Ji-Hong, Duan Jia-Hua, Peng Hong-Shang, Wu Hong-Peng, Fu Ming, Wang Yong-Sheng, Zhang Xi-Qing An optimized, sensitive and stable reduced graphene oxide-gold nanoparticle-luminol-H2O2 chemiluminescence system and its potential analytical application 2014 Chin. Phys. B 23 048103

[1] White E H and Harding M J C 1964 J. Am. Chem. Soc. 86 5686
[2] Isacsson U and Wettermark G 1974 Anal. Chim. Acta 68 339
[3] Edwards J, Sprung R, Sprague R and Spence D 2001 Analyst. 126 1257
[4] Pérez-Ruiz T, Martínez-Lozano C, Tomás V and Martín J 2003 Anal. Bioanal. Chem. 377 189
[5] Marquette C A and Blum L J 2006 Anal. Bioanal. Chem. 385 546
[6] Guo J Z, Cui H, Zhou W and Wang W 2008 J. Photoch. Photobio. A 193 89
[7] Leff D V, Brandt L and Heath J R 1996 Langmuir 12 4723
[8] Sastry M, Kumar A and Mukherjee P 2001 Colloid. Surface A 181 255
[9] Safavi A, Absalan G and Bamdad F 2008 Anal. Chim. Acta 610 243
[10] Bi S, Yan Y, Yang X and Zhang S 2009 Chem-Eur. J. 15 4704
[11] Xiang Y J, Wu X C, Liu D F, Zhang Z X, Song L, Zhao X W, Liu L F, Luo S D, Ma W J, Shen J, Zhou W Y, Zhou J J, Wang C Y and Wang G 2006 Chin. Phys. 15 2080
[12] Wang W S, He D W, Duan J H, Wang S F, Peng H S, Wu H P, Fu M, Wang Y S and Zhang X Q 2013 Chem. Phys. Lett. 582 119
[13] Duan J H, He D W, Wang W S, Liu Y C, Wu H P, Wang Y S and Fu M 2013 Chem. Phys. Lett. 574 83
[14] Tian D, Duan C, Wang W and Cui H 2010 Biosens. Bioelectron. 25 2290
[15] Li Q, Liu F, Lu C and Lin J M 2011 J. Phys. Chem. C 115 10964
[16] Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 Chem. Soc. Rev. 39 228
[17] Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'homme R K, Car R, Saville D A and Aksay I A 2006 J. Phys. Chem. B 110 8535
[18] Le Z G, Liu Z R, Qian Y and Wang C Y 2012 Appl. Surf. Sci. 258 5348
[19] Xue Y, Zhao H, Wu Z, Li X, He Y and Yuan Z 2011 Biosens. Bioelectron. 29 102
[20] Mao F, Zhang C, Zhang Y W and Zhang F S 2012 Chin. Phys. Lett. 29 076101
[21] Deng P F, Lei T M, Lu J J, Liu F Y, Zhang Y M, Guo H, Zhang Y M, Wang Y H and Tang X Y 2013 Chin. Phys. Lett. 30 018101
[22] Goncalves G, Marques P A A P, Granadeiro C M, Nogueira H I S, Singh M K and Grácio J 2009 Chem. Mater. 21 4796
[23] Fu X, Bei F, Wang X, O'Brien S and Lombardi J R 2010 Nanoscale 2 1461
[24] Lee Y H, Polavarapu L, Gao N, Yuan P and Xu Q H 2012 Langmuir 28 321
[25] Hummers W S Jr and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[26] Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217
[27] Sun Z, Yan Z, Yao J, Beitler E, Zhu Y and Tour J M 2010 Nature 468 549
[28] Wu P, Shao Q, Hu Y, Jin J, Yin Y and Zhang H 2010 Electrochim. Acta 55 8606
[29] Zhang J, Yang H, Shen G, Cheng P, Zhang J and Guo S 2010 Chem. Commun. 46 1112
[30] Suo S, Wen D, Zhai Y, Dong S and Wang E 2010 ACS Nano 4 3959
[31] Han J, Zhuo Y, Y Q Chai, Mao L, Yuan Y L and Yuan R 2011 Talanta 85 130
[32] Mao Y, Bao Y, Wang W, Li Z, Li F and Niu L Niu 2011 Talanta 85 2106
[33] Loh K P, Bao Q, Ang P K and Yang J 2010 J. Mater. Chem. 20 2277
[34] Kuila T, Bose S, Mishra A K, Khanra P, Kim N H and Lee J H 2012 Prog. Mater. Sci. 57 1061
[35] Zhang Z F, Cui H, Lai C Z and Liu L J 2005 Anal. Chem. 77 3324
[36] Sharma R K, Sharma P and Maitra A 2003 J. Collid Interf. Sci. 265 134
[37] Henglein A 1993 J. Phys. Chem. 97 5457
[38] Wang D M, Zhang Y, Zheng L L, Yang X X, Wang Y and Huang C Z 2012 J. Phys. Chem. C 116 21622
[39] Wang L, Yang P, Li Y, Chen H, Li M and Luo F 2007 Talanta 72 1066
[1] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[2] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[3] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[7] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[8] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[9] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[10] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[11] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[12] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[13] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[14] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[15] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
No Suggested Reading articles found!