Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047301    DOI: 10.1088/1674-1056/23/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Direct measurement of the interfacial barrier height of the manganite p-n heterojunction

Wang Mei, Wang Deng-Jing, Wang Ru-Wu, Li Yun-Bao
Department of Applied Physics, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract  A manganite p-n heterojunction composed of La0.67Sr0.33MnO3 film and 0.05 wt% Nb-doped SrTiO3 substrate is fabricated. Rectifying behavior of the junction well described by the Shockley equation is observed, and the transport properties of the interface are experimentally studied. A satisfactorily logarithmic linear dependence of resistance on temperature is observed in a temperature range of 150 K-380 K, and the linear relation between bias and activation energies deduced from the R-1/T curves is observed. According to activation energy, the interfacial barrier of the heterojunction is obtained, which is 0.91 eV.
Keywords:  manganite      heterojunction      interfacial barrier  
Received:  25 July 2013      Revised:  17 October 2013      Accepted manuscript online: 
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Ei (Rectification)  
  75.47.Gk (Colossal magnetoresistance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10804089).
Corresponding Authors:  Wang Deng-Jing     E-mail:  d.j.wang@163.com
About author:  73.40.Lq; 73.40.Ei; 75.47.Gk

Cite this article: 

Wang Mei, Wang Deng-Jing, Wang Ru-Wu, Li Yun-Bao Direct measurement of the interfacial barrier height of the manganite p-n heterojunction 2014 Chin. Phys. B 23 047301

[1] Sugiura M, Uragou K, Noda M, Tachiki M and Kobayashi T 1999 Jpn. J. Appl. Phys., Part 1 38 2675
[2] Sun J R, Shen B G, Sheng Z G and Sun Y P 2004 Appl. Phys. Lett. 85 3375
[3] Liu Y K, Yin Y W and Li X G 2013 Chin. Phys. B 22 087502
[4] Sheng Z G, Zhao B C, Song W H, Sun Y P, Sun J R and Shen B G 2005 Appl. Phys. Lett. 87 242501
[5] Chen Y F, Ziese M and Esquinazi P 2007 J. Appl. Phys. 101 123906
[6] Yajima T, Hikita Y and Hwang H Y 2011 Nat. Mater. 10 198
[7] Sawa A, Fujii T, Kawasaki M and Tokurad Y 2005 Appl. Phys. Lett. 86 112508
[8] Cuellar F A, Sanchez-Santolino G, Varela M, Clement M, Iborra E, Sefrioui Z, Santamaria J and Leon C 2012 Phys. Rev. B 85 245122
[9] Xie Y W, Guo D F, Sun J R and Shen B G 2010 Chin. Phys. B 19 117306
[10] Postma F M, Ramaneti R, Banerjee T, Gokcan H, Haq E, Blan kDHA, Jansen R and Lodder J C 2004 J. Appl. Phys. 95 7324
[11] Lü W M, Sun J R, Wang D J, Xie Y W, Liang S, Chen Y Z and Shen B G 2008 Appl. Phys. Lett. 92 062503
[12] Wang D J, Sun J R, Lü W M, Xie Y W, Liang S and Shen B G 2007 J. Phys. D: Appl. Phys. 40 5075
[13] Wang D J, Xie Y W, Xiong C M, Shen B G and Sun J R 2006 Europhys. Lett. 73 401
[14] Sze S M 1998 Physics of Semiconductor Devices, 2nd edn. (New York: Wiley)
[15] Anderson R L 1962 Solid-State Electron. 5 341
[16] Lü W M, Wei A D, Sun J R, Chen Y Z and Shen B G 2009 Appl. Phys. Lett. 94 082506
[1] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[2] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[3] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[4] Microstructure evolution and passivation quality of hydrogenated amorphous silicon oxide (a-SiOx:H) on <100>- and <111>-orientated c-Si wafers
Jun-Fan Chen(陈俊帆), Sheng-Sheng Zhao(赵生盛), Ling-Ling Yan(延玲玲), Hui-Zhi Ren(任慧志), Can Han(韩灿), De-Kun Zhang(张德坤), Chang-Chun Wei(魏长春), Guang-Cai Wang(王广才), Guo-Fu Hou(侯国付), Ying Zhao(赵颖), Xiao-Dan Zhang(张晓丹). Chin. Phys. B, 2020, 29(3): 038801.
[5] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[6] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
[7] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[8] Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout
Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪). Chin. Phys. B, 2019, 28(9): 098502.
[9] Rectifying characteristics and solar-blind photoresponse in β-Ga2O3/ZnO heterojunctions
Xiao-Fei Ma(马晓菲), Yuan-Qi Huang(黄元琪), Yu-Song Zhi(支钰崧), Xia Wang(王霞), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), Wei-Hua Tang(唐为华). Chin. Phys. B, 2019, 28(8): 088503.
[10] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[11] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[12] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[13] Electro-optical dual modulation on resistive switching behavior in BaTiO3/BiFeO3/TiO2 heterojunction
Jia-Jia Zhao(赵佳佳), Jin-Shuai Zhang(张金帅), Feng Zhang(张锋), Wei Wang(王威), Hai-Rong He(何海蓉), Wang-Yang Cai(蔡汪洋), Jin Wang(王进). Chin. Phys. B, 2019, 28(12): 126801.
[14] Simulation of a-Si: H/c-Si heterojunction solar cells: From planar junction to local junction
Haibin Huang(黄海宾), Lang Zhou(周浪), Jiren Yuan(袁吉仁), Zhijue Quan(全知觉). Chin. Phys. B, 2019, 28(12): 128503.
[15] Pressure-mediated contact quality improvement between monolayer MoS2 and graphite
Mengzhou Liao(廖梦舟), Luojun Du(杜罗军), Tingting Zhang(张婷婷), Lin Gu(谷林), Yugui Yao(姚裕贵), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017301.
No Suggested Reading articles found!