Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046806    DOI: 10.1088/1674-1056/23/4/046806
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

An application of half-terrace model to surface ripening of non-bulk GaAs layers

Liu Ke, Guo Xiang, Zhou Qing, Zhang Bi-Chan, Luo Zi-Jiang, Ding Zhao
College of Electronics and Information, Guizhou University, Guiyang 550025, China
Abstract  In order to predict the actual quantity of non-bulk GaAs layers after long-time homoepitaxy on GaAs (001) by theoretical calculation, a half-terrace diffusion model based on thermodynamics is used to calculate the ripening time of GaAs layers to form a flat morphology in annealing. To verify the accuracy of the calculation, real space scanning tunneling microscopy images of GaAs surface after different annealing times are obtained and the roughness of the GaAs surface is measured. The results suggest that the half terrace model is an accurate method with a relative error of about 4.1%.
Keywords:  scanning tunneling microscopy      Ⅲ-Ⅴ semiconductors      annealing      diffusion in nanoscale solids  
Received:  31 July 2013      Revised:  05 November 2013      Accepted manuscript online: 
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  81.05.Ea (III-V semiconductors)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  66.30.Pa (Diffusion in nanoscale solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60866001) and the Doctorate Foundation of the Education Ministry of China (Grant No. 20105201110003).
Corresponding Authors:  Ding Zhao     E-mail:  zding@gzu.edu.cn
About author:  68.37.Ef; 81.05.Ea; 81.40.Ef; 66.30.Pa

Cite this article: 

Liu Ke, Guo Xiang, Zhou Qing, Zhang Bi-Chan, Luo Zi-Jiang, Ding Zhao An application of half-terrace model to surface ripening of non-bulk GaAs layers 2014 Chin. Phys. B 23 046806

[1] Kaganer V M, Braun W and Sabelfeld K K 2007 Phys. Rev. B 76 075415
[2] Haußer F and Voigt A 2005 Phys. Rev. B 72 035437
[3] Burlakov V M 2006 Phys. Rev. Lett. 97 155703
[4] Ostwald W 1900 Zeitschrift für Physikalische Chemie 34 495
[5] Yao J H and Laradji M 1993 Phys. Rev. E 47 2695
[6] Simonsen S B, Chorkendorff I, Dahl S, Skoglundh M, Sehested J and Helveg S 2011 J. Catal. 281 147
[7] Alloyeau D, Prévot G, Le Bouar Y, Oikawa T, Langlois C, Loiseau A and Ricolleau C 2010 Phys. Rev. Lett. 105 255901
[8] LaBella V P, Krause M R, Ding Z and Thibado P M 2005 Surf. Sci. Rep. 60 1
[9] Ding Z, Bullock D W, Thibado P M, LaBella V P and Mullen K 2003 Surf. Sci. 540 491
[10] Ding Z, Bullock D W, Thibado P M, LaBella V P and Mullen K 2003 Phys. Rev. Lett. 90 216109
[11] LaBella V P, Bullock D W, Ding Z, Emery C, Venkatesan A, Oliver W F, Salamo G J, Thibado P M and Mortazavi M 2001 Science 292 1518
[12] Wei Q, Lian J, Lu W and Wang L 2008 Phys. Rev. Lett. 100 076103
[13] Heyn C, Stemmann A, Schramm A, Welsch H, Hansen W and Nemcsics Á 2007 Phys. Rev. B 76 075317
[14] McLean J G, Krishnamachari B, Peale D R, Chason E, Sethna J P and Cooper B H 1997 Phys. Rev. B 55 1811
[15] Zhang Y W 1999 Appl. Phys. Lett. 75 205
[16] Sadowski T and Ramprasad R 2010 Appl. Phys. Lett. 96 101906
[17] Bales G S and Zangwill A 1990 Phys. Rev. B 41 5500
[18] LaBella V P, Bullock D W, Ding Z, Emery C, Harter W G and Thibado P M 2000 J. Vac. Sci. Technol. A 18 1526
[19] Ratsch C, Nelson M D and Zangwill A 1994 Phys. Rev. B 50 14489
[20] Nishzawa T 2006 Thermodynamics of Microstructure (Beijing: Chemical Industry Press) pp. 140-143, 183 (in Chinese)
[21] Liu K, Zhou Q, Zhou X, Guo X, Luo Z J, Wang J H, Hu M Z and Ding Z 2013 Chin. Phys. B 22 26801
[22] Xiang R, Lung M T and Lam C H 2010 Phys. Rev. E 82 021601
[1] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[2] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[3] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[4] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[5] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[6] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[7] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[8] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[9] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[10] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[11] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[12] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[13] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[14] Triphenylene adsorption on Cu(111) and relevant graphene self-assembly
Qiao-Yue Chen(陈乔悦), Jun-Jie Song(宋俊杰), Liwei Jing(井立威), Kaikai Huang(黄凯凯), Pimo He(何丕模), Hanjie Zhang(张寒洁). Chin. Phys. B, 2020, 29(2): 026801.
[15] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), and Qing He(何清)$. Chin. Phys. B, 2020, 29(11): 117701.
No Suggested Reading articles found!