Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037302    DOI: 10.1088/1674-1056/23/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer

Wen Hui-Juan, Zhang Jin-Cheng, Lu Xiao-Li, Wang Zhi-Zhe, Ha Wei, Ge Sha-Sha, Cao Rong-Tao, Hao Yue
State Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
Abstract  The quality of an AlGaN channel heterojunction on a sapphire substrate is massively improved by using an AlGaN/GaN composite buffer layer. We demonstrate an Al0.4Ga0.6N/Al0.18Ga0.82N heterojunction with a state-of-the-art mobility of 815 cm2/(V·s) and a sheet resistance of 890 Ω/ under room temperature. The crystalline quality and the electrical properties of the AlGaN heterojunction material are analyzed by atomic force microscopy, high-resolution X-ray diffraction, and van der Pauw Hall and capacitance–voltage (C–V) measurements. The results indicate that the improved electrical properties should derive from the reduced surface roughness and low dislocation density.
Keywords:  AlGaN channel      heterojunction      mobility      electrical properties  
Received:  12 August 2013      Revised:  24 September 2013      Published:  15 March 2014
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.-c (Electronic transport in interface structures)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant Nos. 2011ZX01002-002 and 2013ZX02308-002), the Fundamental Research Funds for the Central Universities of Ministry of Education of China, and the National Natural Science Foundation of China (Grant Nos. 61204006 and 61106063).
Corresponding Authors:  Zhang Jin-Cheng     E-mail:  jchzhang@xidian.edu.cn

Cite this article: 

Wen Hui-Juan, Zhang Jin-Cheng, Lu Xiao-Li, Wang Zhi-Zhe, Ha Wei, Ge Sha-Sha, Cao Rong-Tao, Hao Yue Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer 2014 Chin. Phys. B 23 037302

[1] Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653
[2] Zhang K, Cao M Y, Lei X Y and Hao Y 2013 Chin. Phys. B 22 097303
[3] Mishra U K, Shen L, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
[4] Nanjo T, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y and Aoyagi Y 2008 Appl. Phys. Lett. 92 263502
[5] Nanjo T, Takeuchi M, Imai A, Oishi T, Abe Y and Yagyu E 2009 Electron. Lett. 45 1346
[6] Hashimoto S, Akita K, Yamamoto Y, Ueno M, Nakamura T, Yafune N and Amano H 2012 Phys. Status Solidi 9 373
[7] Nanjo T, Suita M, Oishi T, Abe Y, Yagyu E, Yoshiara K and Tokuda Y 2009 Electron. Lett. 45 424
[8] Raman A, Dasgupta S, Rajan S, Speck J S and Mishra U K 2008 Jpn. J. Appl. Phys. 47 3359
[9] Raghavan S and Redwing J 2005 J. Appl. Phys. 98 023515
[10] Meng F N, Zhang J C, Zhou H, Ma J C and Xue J S 2012 J. Appl. Phys. 112 023707
[11] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[12] Zywietz T, Neugebauer J and Scheffler M 1998 Appl. Phys. Lett. 73 487
[13] Lebedev V, Tonisch K, Niebelschütz F, Cimalla V, Cengher D, Cimalla I, Mauder C, Hauguth S, Ambacher O, Morales F M, Lozano J G and González D 2007 J. Appl. Phys. 101 054906
[14] Ni J Y, Zhang J C, Hao Y, Yang Y, Chen H F and Gao Z Y 2007 Acta Phys. Sin. 56 6629 (in Chinese)
[15] Nanjo T, Takeuchi M, Imai A, Suita M, Oishi T, Abe Y, Yagyu E, Kurata T, Tokuda Y and Aoyagi Y 2009 Electron. Lett. 45 1346
[16] Zanato D, Gokden S, Balkan N, Ridley B K and Schaff W J 2004 Semicond. Sci. Technol. 19 427
[17] Asgari A, Babanejad S and Faraone L 2011 J. Appl. Phys. 110 113713
[18] Lisesivdin S B, Acar S, Kasap M, Ozcelik S, Gokden S and Ozbay E 2007 Semicond. Sci. Technol. 22 543
[19] Wang J X, Yang S Y, Wang J and Wang Z G 2013 Chin. Phys. B 22 077305
[20] Wang M J, Shen B, Xu F J, Wang Y, Xu J, Huang S and Zhang G Y 2007 Appl. Phys. A 88 715
[21] Elhamri S, Mitchel W C, Mitchell W D, Landis G R, Berney R and Saxler A 2007 Appl. Phys. Lett. 90 042112
[1] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[2] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[3] Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect
Zhao Li(李钊), Jing-Ping Xu(徐静平), Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿). Chin. Phys. B, 2021, 30(1): 018102.
[4] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[5] Electrical properties of m×n cylindrical network
Zhi-Zhong Tan(谭志中), Zhen Tan(谭震). Chin. Phys. B, 2020, 29(8): 080503.
[6] Facile and fast growth of high mobility nanoribbons of ZrTe5
Jingyue Wang(王璟岳), Jingjing Niu(牛晶晶), Xinqi Li(李新祺), Xiumei Ma(马秀梅), Yuan Yao(姚湲), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(6): 068102.
[7] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[8] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[9] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[10] Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦). Chin. Phys. B, 2020, 29(3): 038505.
[11] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[12] Microstructure evolution and passivation quality of hydrogenated amorphous silicon oxide (a-SiOx:H) on <100>- and <111>-orientated c-Si wafers
Jun-Fan Chen(陈俊帆), Sheng-Sheng Zhao(赵生盛), Ling-Ling Yan(延玲玲), Hui-Zhi Ren(任慧志), Can Han(韩灿), De-Kun Zhang(张德坤), Chang-Chun Wei(魏长春), Guang-Cai Wang(王广才), Guo-Fu Hou(侯国付), Ying Zhao(赵颖), Xiao-Dan Zhang(张晓丹). Chin. Phys. B, 2020, 29(3): 038801.
[13] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[14] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!