Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020505    DOI: 10.1088/1674-1056/ac7dbe
GENERAL Prev   Next  

Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields

Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如)
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
Abstract  Anomalous transports of dipole in alternating electric fields are investigated by means of numerical calculation of its average angular velocity (or current). Our results show that the alternating electric fields can make the dipole exhibit many interesting transport behaviors. There exist current bifurcation and multiple current reversal phenomena about frequency of the alternating electric fields in the system in the absence of constant bias force, while many platforms appear in the curve of its average angular velocity vs. the force, i.e., multiple mobility transitions phenomenon in the presence of the constant force, dependent on frequencies of the alternating electric fields. Further investigation indicates that the multiple mobility transitions are attributed to the traveling forces on the dipole. Intrinsic physical mechanism and conditions for the characteristic dynamical behaviors to occur are also discussed in detail. These findings will possess crucial significance for optimizing heating control in the alternating electric fields.
Keywords:  dipole      current bifurcation      current reversals      mobility transition  
Received:  13 April 2022      Revised:  07 June 2022      Accepted manuscript online:  02 July 2022
PACS:  05.60.Cd (Classical transport)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the Research Group of Nonequilibrium Statistics (Grant No. 14078206), and Kunming University of Science and Technology, China.
Corresponding Authors:  Lin-Ru Nie     E-mail:

Cite this article: 

Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如) Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields 2023 Chin. Phys. B 32 020505

[1] Mogilatov V S and Zlobinsky A V 2014 Russian Geol. Geophys. 55 1340
[2] Knoll B and Keilmann F 2000 Opt. Commun. 182 321
[3] Dastagiri S, Lakshmaiah M V, Chandra Babu and Naidu K 2020 Physica E 120 114052
[4] Chen Y, Xie S X, Wang H M, Chen Q, Wang Q Y, Zhu J G and Guan Z W 2017 J. Alloys Compd. 696 746
[5] Bakaleinikov L and Gordon A 2008 Physica B 403 3853
[6] Corbó G and Testa M 2009 Am. J. Phys. 77 818
[7] Serna J D and Amitabh Josh 2019 Opt. Commun. 445 291
[8] Yu H, Zhao T J, Ji Q, Song Y L, Wang Y H and Zhan Y 2002 Commun. Theor. Phys. 37 381
[9] Zhang G F, Wang X and Lü G H 2014 Chin. Phys. B 23 104204
[10] Chang B Y, Shin S, Palacios A, Martín F and Sola I R 2013 J. Chem. Phys. 139 084306
[11] Zhang H W, Zhi L H and Li Y X 2003 Mod. Phys. Lett. B 17 281
[12] Rozenbaum V M, Vovchenko O Ye and Korochkova T Y 2008 Phys. Rev. E 77 061111
[13] Cugliandolo L F, Dejardin P M, Lozano G S and Wijland F V 2015 Phys. Rev. E 91 032139
[14] Wu R X, Zhang G F, Qiao Z X and Chen R Y 2019 Acta Phys. Sin. 68 128201 (in Chinese)
[15] Dubois V, Umari P and Pasquarello A 2004 Chem. Phys. Lett. 390 193
[16] Lutsev L V, Kazantseva N E, Tchmutin I A, Ryvkina N G, Kalinin Y E and Sitnikoff A V 2003 J. Phys.: Condens. Matter 15 3665
[17] Aboelfotoh F 1993 Phys. Rev. B 47 20
[18] Huang L C and Fu C M 2015 Physica B 473 54
[19] Chen R Y, Pan W L, Zhang J Q and Nie L R 2016 Chaos 26 093113
[20] Chen R Y, Nie L R, Pan W L and Zhang J Q 2017 J. Stat. Mech. 2017 013201
[21] Risken H 1984 The Fokker-Planck Equation (Berlin: Springer-Verlag) p. 283
[22] Risken H and Vollmer H D 1982 Mol. Phys. 46 555
[23] Gartstein Y N and Shaw J G 1999 J. Phys. D: Appl. Phys. 32 2176
[24] Pietro Tierno and Arthur V S 2016 Eur. Phys. J. E 39 54
[25] Huh J H 2017 Phys. Rev. E 95 042704
[26] Edwards B F, Timperman A T, R Lloyd Carroll, Kyoo Jo, Jon M Mease and Jarrod E Schiffbauer 2009 Phys. Rev. Lett. 102 076103
[27] Wu W X, Zheng Z G, Song Y L, et al. 2020 Chin. Phys. B 29 090503
[28] Szoke A, Daneum V, Goldhar J and Kurnit N A 1969 App. Phys. Lett. 15 379
[29] Feig M F, Niroula P, Young J T, Hafezi M, Gorshkov A V, Wilson R M and Maghrebi M F 2017 Phys. Rev. A 95 043826
[30] Cubero D and Renzoni F 2016 Phys. Rev. Lett. 116 010602
[31] Tammelo R, Mankin R and Martila D 2002 Phys. Rev. E 66 051101
[32] Sun X X, Nie L R and Li P 2011 Europhys. Lett. 95 50003
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[3] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[4] Strong near-field couplings of anapole modes and formation of higher-order electromagnetic modes in stacked all-dielectric nanodisks
Bin Liu(刘彬), Ma-Long Hu(胡马龙), Yi-Wen Zhang(章艺文), Yue You(游悦), Zhao-Guo Liang(梁钊国), Xiao-Niu Peng(彭小牛), and Zhong-Jian Yang(杨中见). Chin. Phys. B, 2022, 31(5): 057802.
[5] Molecule opacity study on low-lying states of CS
Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(10): 103101.
[6] M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤ Z ≤ 94
Ju Meng(孟举), Wen-Xian Li(李文显), Ji-Guang Li(李冀光), Ze-Qing Wu(吴泽清), Jun Yan(颜君), Yong Wu(吴勇), and Jian-Guo Wang(王建国). Chin. Phys. B, 2022, 31(1): 013101.
[7] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[8] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[9] Influence of the coupled-dipoles on photosynthetic performance in a photosynthetic quantum heat engine
Ling-Fang Li(李玲芳) and Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2021, 30(4): 044215.
[10] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[11] Photoluminescence of green nanophosphors Sr2MgSi2O7 doped with Tb3+ under 374-nm excitation
Bo-Shi Mu(牟博石), Yi Zhang(张熠), Qing-Feng Bian(边庆丰), Cheng-Ren Li(李成仁), Zhi-Chao Li(李志超), Yun-Ting Chu(褚云婷), Feng Zhao(赵峰), and Jing-Chang Sun(孙景昌). Chin. Phys. B, 2021, 30(12): 123201.
[12] Angular dependence of vertical force and torque when magnetic dipole moves vertically above flat high-temperature superconductor
Yong Yang(杨勇), Shuai-Jie Yang(杨帅杰), Wen-Li Yang(杨文莉), and Yun-Yi Wu(吴云翼). Chin. Phys. B, 2021, 30(12): 127401.
[13] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[14] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[15] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
No Suggested Reading articles found!