Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 023302    DOI: 10.1088/1674-1056/23/2/023302
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

High-pressure-activated carbon tetrachloride decomposition

Chen Yuan-Zhenga b, Zhou Mia b, Sun Mei-Jiaoa, Li Zuo-Weia, Sun Cheng-Lina
a College of Physics, Jilin University, Changchun 130012, China;
b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  The pressure-induced molecular dissociation as one of the fundamental problems in physical sciences has aroused many theoretical and experimental studies. Here, using a newly developed particle swarm optimization algorithm, we investigate the high-pressure-induced molecular dissociation. The results show that the carbon tetrachloride (CCl4) is unstable and dissociates into C2Cl6 and Cl2 under approximately 120 GPa and more. The dissociation is confirmed by the lattice dynamic calculations and electronic structure of the Pa3 structure with pressure evolution. The dissociation pressure is far larger than that in the case of high temperature, indicating that the temperature effectively reduces the activation barrier of the dissociation reaction of CCl4. This research improves the understanding of the dissociation reactions of CCl4 and other halogen compounds under high pressures.
Keywords:  crystal structure prediction      decomposition      carbon tetrachloride      high pressure  
Received:  31 March 2013      Revised:  11 July 2013      Accepted manuscript online: 
PACS:  33.15.-e (Properties of molecules)  
  33.15.Fm (Bond strengths, dissociation energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974067 and 11104107), the Program of the Science and Technology Department of Jilin Province, China (Grant Nos. 20090534 and 20101508), and the China Postdoctoral Science Foundation (Grant No. 20110491320).
Corresponding Authors:  Sun Cheng-Lin     E-mail:  chenglin@jlu.edu.cn
About author:  33.15.-e; 33.15.Fm

Cite this article: 

Chen Yuan-Zheng, Zhou Mi, Sun Mei-Jiao, Li Zuo-Wei, Sun Cheng-Lin High-pressure-activated carbon tetrachloride decomposition 2014 Chin. Phys. B 23 023302

[1] Rudman R and Post B 1966 Science 154 1009
[2] Weir C E, Piermarini G J and Block S 1969 J. Chem. Phys. 50 2424
[3] Piermarini G J and Braun A B 1973 J. Chem. Phys. 58 1974
[4] Cohen S, Powers R and Rudman R 1979 Acta Cryst. B 35 1670
[5] Adams D M and Sharma S K 1976 J. Chem. Soc. Dalton Trans. 15 2089
[6] Kawamura H, Kobayashi M, Yamamato Y, Matsui N and Akahama Y 1997 Solid State Commnun. 102 501
[7] Choudhury J, Karumuri S R and Sarkar N K 2008 Pramana J. 71 439
[8] Yurtseven H and Kavruk D 2008 J. Mol. Liq. 139 117
[9] Chen Y Z, Sun S, Li Z W, Ouyang S L, Li D F, Men Z W, Zhou M and Sun C L 2012 Phys. Status Solidi B 249 2113
[10] Walsh J M and Rice M H 1957 J. Chem. Phys. 26 815
[11] Dick R D 1970 J. Chem. Phys. 52 6021
[12] Fat’yanov O V, Ogura T, Nicol M F, Nakamura K G and Kondo K 2000 Appl. Phys. Lett. 77 960
[13] Cheng L T and Mi Z 2009 Chin. Phys. Lett. 26 070701
[14] Yukio S, Tomokazu S and Shinichi N 2010 J. Appl. Phys. 107 033507
[15] Wang Y C, Lü J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[16] Li P, Gao G Y, Wang Y C and Ma Y M 2010 J. Phys. Chem. C 114 21745
[17] Lü J, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
[18] Zhu L, Wang H, Wang Y, Lü J, Ma Y M, Cui Q and Zou G 2011 Phys. Rev. Lett. 106 145501
[19] Wang Y C, Liu H Y, Lü J, Zhu L, Wang H and Ma Y M 2011 Nat. Commun. 2 563
[20] Guillaume C L, Gregoryanz E, Degtyareva O, McMahon M, Hanfland M, Evans S, Guthrie M and Sinogeikin S 2011 Nat. Phys. 7 211
[21] Kresse G and Furthmüler J 1996 Phys. Rev. B 54 11169
[22] Parlinski K and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[23] Choudhury J and Karumuri S R 2008 J. Phys. 71 439
[24] Chakrabory T and Sachida N R 2006 Spectrochim. Acta, Part A 65 406
[25] Gaussian 98, Revision A.6 (Gaussian, Inc., Pittsburgh, 1998)
[26] Yurtseven H and Dildar Y 2011 Korean J. Chem. Eng. 28 252
[27] Perdew J P and Levy M 1983 Phys. Rev. Lett. 51 1884
[28] Sham L J and Schluter M 1983 Phys. Rev. Lett. 51 1888
[29] Godby R W, Schluter M and Sham L J 1988 Phys. Rev. B 37 10159
[1] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[2] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[3] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[4] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[5] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[6] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[7] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[8] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[9] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[10] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[11] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[12] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[13] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[14] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[15] Chaotic signal denoising algorithm based on sparse decomposition
Jin-Wang Huang(黄锦旺), Shan-Xiang Lv(吕善翔), Zu-Sheng Zhang(张足生), Hua-Qiang Yuan(袁华强). Chin. Phys. B, 2020, 29(6): 060505.
No Suggested Reading articles found!