Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037103    DOI: 10.1088/1674-1056/21/3/037103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Isothermal bulk modulus and its first pressure derivative of NaCl at high pressure and high temperature

Song Tinga,Sun Xiao-Weia,Liu Zi-Jiangb,Li Jian-Fenga,Tian Jun-Honga
1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China;
2. Department of Physics, Lanzhou City University, Lanzhou 730070, China
Abstract  The isothermal bulk modulus and its first pressure derivative of NaCl are investigated using the classical molecular dynamics method and the quasi-harmonic Debye model. To ensure faithful molecular dynamics simulations, two types of potentials, the shell-model (SM) potential and the two-body rigid-ion Born-Mayer-Huggins-Fumi-Tosi (BMHFT) potential, are fully tested. Compared with the SM potential based simulation, the molecular dynamics simulation with the BMHFT potential is very successful in reproducing accurately the measured bulk modulus of NaCl. Particular attention is paid to the prediction of the isothermal bulk modulus and its first pressure derivative using the reliable potential and to the comparison of the SM and the BMHFT potentials based molecular dynamics simulations with the quasi-harmonic Debye model. The properties of NaCl in the pressure range of 0-30 GPa at temperatures up to the melting temperature of 1050 K are investigated.
Keywords:  isothermal bulk modulus      NaCl      high pressure      high temperature  
Received:  16 July 2011      Revised:  23 October 2011      Published:  15 February 2012
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  31.15.A- (Ab initio calculations)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  91.60.Gf (High-pressure behavior)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164013 and 11064007), the Natural Science Foundation of Gansu Province, China (Grant Nos. 014RJZA046 and 0803RJZA106), and the Program for Longyuan Youth Innovation Talents of the Gansu Province, China.
Corresponding Authors:  Sun Xiao-Wei,sunxw_lzjtu@126.com     E-mail:  sunxw_lzjtu@126.com

Cite this article: 

Song Ting,Sun Xiao-Wei,Liu Zi-Jiang,Li Jian-Feng,Tian Jun-Hong Isothermal bulk modulus and its first pressure derivative of NaCl at high pressure and high temperature 2012 Chin. Phys. B 21 037103

[1] Roy S B and Roy P B 1999 J. Phys.: Condens. Matter 11 10375
[2] Sun X W, Chu Y D, Liu Z J, Song T, Guo P and Chen Q F 2009 Mater. Chem. Phys. 116 34
[3] Kumar M 1996 Physica B 217 143
[4] Ono S, Brodholt J P, Alf`e D, Alfredsson M and Price G D 2008 J. Appl. Phys. 103 023510
[5] Nishiyama N, Katsura T, Funakoshi K, Kubo A, Kubo T, Tange Y, Sueda Y and Yokoshi S 2003 Phys. Rev. B 68 134109
[6] Boehler R, Ross M and Boercker D B 1997 Phys. Rev. Lett. 78 4589
[7] Dick B G and Overhauser A W 1958 Phys. Rev. 112 90
[8] Fumi F G and Tosi M P 1964 J. Phys. Chem. Solids 25 45
[9] Blanco M A, Francisco E and Lua na V 2004 Comput. Phys. Commun. 158 57
[11] Sun X W, Chu Y D, Liu Z J, Liu Y X, Wang C W and Liu W M 2005 Acta Phys. Sin. 54 5830 (in Chinese)
[12] Zykova-Timan T, Ceresoli D, Tartaglino U and Tosatti E 2005 J. Chem. Phys. 123 164701
[13] Mitchell P J and Fincham D 1993 J. Phys. C 5 1031
[14] Verlet L 1967 Phys. Rev. 159 98
[15] Sun X W, Wang X G, Song T, Li Y H, Liu Y X and Chen Q F 2008 Physica B 403 3255
[16] Zhang S and Chen N 2002 Phys Rev. B 66 064106
[17] Vanderbilt D 1990 Phys. Rev. B 41 7892
[18] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[19] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[20] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[21] Sun X W, Zeng Z Y, Song T, Fu Z J, Kong B and Chen Q F 2010 Chem. Phys. Lett. 496 64
[22] Liu Z J, Qi J H, Guo Y, Chen Q F, Cai L C and Yang X D 2007 Chin. Phys. 16 0499
[23] Sun X W, Chen Q F, Chen X R, Cai L C and Jing F Q 2011 J. Solid State Chem. 184 427
[24] Birch F 1986 J. Geophys. Res. 91 4949
[25] Boehler R and Kennedy G C 1980 J. Phys. Chem. Solids 41 517
[26] Duffy T S and Anderson D L 1989 J. Geophys. Res. 94 1895
[27] Anderson O L 1995 Equations of State of Solids for Geophysics and Ceramics Science (New York: Oxford University Press) p. 405
[28] Cynn H, Anderson O L Isaak D G and Nicol M 1995 J. Phys. Chem. 99 7813
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[3] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[4] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[5] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[6] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
[9] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[10] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[11] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[12] Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method
Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康). Chin. Phys. B, 2020, 29(12): 127403.
[13] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵), Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(10): 108102.
[14] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影), Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[15] A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
Wen-Shu Shen(沈文舒), Lei Wu(吴雷), Tian-Ji Ou(欧天吉), Dong-Hui Yue(岳冬辉), Ting-Ting Ji(冀婷婷), Yong-Hao Han(韩永昊), Wen-Liang Xu(许文良), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2020, 29(1): 010702.
No Suggested Reading articles found!