Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 016804    DOI: 10.1088/1674-1056/ae360b
LETTER Prev   Next  

A metastable state mediates the surface disordering of ice Ih

Zixiang Yan(颜子翔)1, Jiani Hong(洪嘉妮)1, Ye Tian(田野)1, Tiancheng Liang(梁天成)1, Limei Xu(徐莉梅)1,2,3, and Ying Jiang(江颖)1,2,3,4,†
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
2 Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
4 New Cornerstone Science Laboratory, Peking University, Beijing 100871, China
Abstract  Ice premelting, the formation of a quasi-liquid layer on ice surfaces below the bulk melting point, plays a crucial role in various processes, ranging from glacier dynamics to ice friction and surface chemistry. Despite intensive research, the microscopic structure of the premelting layer and underlying molecular mechanisms remain poorly understood. In this work, we studied the temperature- and pressure-dependent structural disordering of crystalline Ih (0001) surface near the onset of premelting on the atomic scale by qPlus-based cryogenic atomic force microscopy. The linear correlation between the density of planar local structure (PLS) and the fraction of disordered surface region showed that the PLS mediated early-stage premelting by serving as a metastable seeding state. Notably, the associated surface disordering is cooperative, extending over an area of roughly $\sim 2 $ nm$^{2}$ around a PLS. We further found a striking structural similarity between the kinetic-trapped regime below the surface crystallization temperature ($T_{\rm c}$) and the premelting-dominated regime above $ T_{\rm c}$. As the deposition pressure increased, the characteristic temperature dependence was preserved, with only $T_{\rm c}$ shifting to higher values due to kinetic effects. Finally, we proposed a surface phase diagram for ice Ih (0001) based on our experimental observations.
Keywords:  atomic force microscopy      ice      premelting      phase diagram  
Received:  19 December 2025      Revised:  04 January 2026      Accepted manuscript online:  09 January 2026
PACS:  68.35.Rh (Phase transitions and critical phenomena)  
  68.37.Ps (Atomic force microscopy (AFM))  
  68.47.-b (Solid-gas/vacuum interfaces: types of surfaces)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFA1400500 and 2025YFF1502400), the National Natural Science Foundation of China (Grant Nos. 92361302, 12250001, 12535001, and U22A20260), and the China Postdoctoral Science Foundation (Grant Nos. BX20230021, 2023T160011, and 2024M760068). J. H. acknowledges support from the National Program for Support of Top-notch Young professionals. Y. J. acknowledges support from Beijing Outstanding Young Scientist Program (Grant No. JWZQ20240101002) and the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE.
Corresponding Authors:  Ying Jiang     E-mail:  yjiang@pku.edu.cn

Cite this article: 

Zixiang Yan(颜子翔), Jiani Hong(洪嘉妮), Ye Tian(田野), Tiancheng Liang(梁天成), Limei Xu(徐莉梅), and Ying Jiang(江颖) A metastable state mediates the surface disordering of ice Ih 2026 Chin. Phys. B 35 016804

[1] Pettersson L G M, Henchman R H and Nilsson A 2016 Chem. Rev. 116 7459
[2] Bartels-Rausch T, Bergeron V, Cartwright J H E, Escribano R, Finney J L, Grothe H, Gutiérrez P J, Haapala J, Kuhs W F, Pettersson J B C, Price S D, Sainz-Díaz C I, Stokes D J, Strazzulla G, Thomson E S, Trinks H and Uras-Aytemiz N 2012 Rev. Mod. Phys. 84 885
[3] Dash J G, Rempel A W and Wettlaufer J S 2006 Rev. Mod. Phys. 78 695
[4] Slater B and Michaelides A 2019 Nat. Rev. Chem. 3 172
[5] Dash J G, Haiying F and Wettlaufer J S 1995 Rep. Prog. Phys. 58 115
[6] Canale L, Comtet J, Niguès A, Cohen C, Clanet C, Siria A and Bocquet L 2019 Phys. Rev. X 9 041025
[7] Sánchez M A, Kling T, Ishiyama T, van Zadel M J, Bisson P J, Mezger M, Jochum M N, Cyran J D, Smit W J, Bakker H J, Shultz M J, Morita A, Donadio D, Nagata Y, Bonn M and Backus E H G 2017 Proc. Natl Acad. Sci. USA 114 227
[8] Wei X, Miranda P B and Shen Y R 2001 Phys. Rev. Lett. 86 1554
[9] Conde M M, Vega C and Patrykiejew A 2008 J. Chem.Phys. 129 014702
[10] Dosch H, Lied A and Bilgram J H 1995 Surf. Sci. 327 145
[11] Hendrik B, Ogletree D F, Charles S F, Zahid H and Miquel S 2002 J. Phys.: Condens. Matter 14 L227
[12] Sazaki G, Zepeda S, Nakatsubo S, Yokomine M and Furukawa Y 2012 Proc. Natl Acad. Sci. USA 109 1052
[13] Pickering I, Paleico M, Sirkin Y A P, Scherlis D A and Factorovich M H 2018 J. Phys. Chem. B 122 4880
[14] Dosch H, Lied A and Bilgram J H 1996 Surf. Sci. 366 43
[15] Fletcher N H 1968 Phil. Mag. 18 1287
[16] Sazaki G, Asakawa H, Nagashima K, Nakatsubo S and Furukawa Y 2013 Cryst. Growth Des. 13 1761
[17] Lin Y, Zhou T, Rosenmann N D, Yu L, Gage T E, Banik S, Neogi A, Chan H, Lei A, Lin X M, Holt M, Arslan I and Wen J 2023 Proc. Natl Acad. Sci. USA 120 e2304148120
[18] Schöder S, Reichert H, Schröder H, Mezger M, Okasinski J S, Honkimäki V, Bilgram J and Dosch H 2009 Phys. Rev. Lett. 103 095502
[19] Suter M T, Andersson P U and Pettersson J B C 2006 J. Chem. Phys. 125 174704
[20] Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelínek P 2014 Phys. Rev. B 90 085421
[21] Peng J, Guo J, Hapala P, Cao D, Ma R, Cheng B, Xu L, Ondráček M, Jelínek P, Wang E and Jiang Y 2018 Nat. Commun. 9 122
[22] Giessibl F J 2003 Rev. Mod. Phys. 75 949
[23] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110
[24] Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G and Jiang Y 2020 Nature 577 60
[25] Shiotari A and Sugimoto Y 2017 Nat. Commun. 8 14313
[26] Hong J, Tian Y, Liang T, Liu X, Song Y, Guan D, Yan Z, Guo J, Tang B, Cao D, Guo J, Chen J, Pan D, Xu L M, Wang E G and Jiang Y 2024 Nature 630 375
[27] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez- Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[28] Tang B, Lo C H, Liang T, Hong J, Qin M, Song Y, Cao D, Jiang Y and Xu L 2025 Phys. Rev. X 15 041048
[29] Dowell L G and Rinfret A P 1960 Nature 188 1144
[30] Amann-Winkel K, Böhmer R, Fujara F, Gainaru C, Geil B and Loerting T 2016 Rev. Mod. Phys. 88 011002
[31] Loerting T and Giovambattista N 2006 J. Phys.: Condens. Matter 18 R919
[32] Zondlo M A, Onasch T B, Warshawsky M S, Tolbert M A, Mallick G, Arentz P and Robinson M S 1997 J. Phys. Chem. B 101 10887
[33] Gallo P, Amann-Winkel K, Angell C A, Anisimov M A, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos A Z, Russo J, Sellberg J A, Stanley H E, Tanaka H, Vega C, Xu L and Pettersson L G M 2016 Chem. Rev. 116 7463
[1] Inverse design of 3D integrated high-efficiency grating couplers using deep learning
Yu Wang(王玉), Yue Wang(王越), Guohui Yang(杨国辉), Kuang Zhang(张狂), Xing Yang(杨星), Chunhui Wang(王春晖), and Yu Zhang(张雨). Chin. Phys. B, 2026, 35(2): 024101.
[2] Pressure-induced superconductivity in kagome metal CsCr3Sb5: Role of spin-orbit coupling and inter-orbital spin fluctuations
Wei Wang(王巍), Shun-Li Yu(于顺利), and Jian-Xin Li(李建新). Chin. Phys. B, 2026, 35(2): 027401.
[3] Design of electrocaloric materials based on E-T phase diagrams
Fei Han(韩飞), Rongju Zhong(钟容菊), Jikun Yang(杨继昆), Chuanbao Liu(刘传宝), and Yang Bai(白洋). Chin. Phys. B, 2026, 35(2): 027704.
[4] Three-dimensional flat bands and possible interlayer triplet pairing superconductivity in the alternating twisted NbSe2 moiré bulk
Shuang Liu(刘爽), Peng Chen(陈鹏), and Shihao Zhang(张世豪). Chin. Phys. B, 2026, 35(2): 026801.
[5] Charge-transfer-induced re-entrant ferromagnetism in twisted-bilayer-MoTe2/hBN/WSe2
Shaozheng Wang(王绍政), Xumin Chang(常旭敏), Feng Liu(刘峰), Yuchen Zheng(郑宇辰), Juncai Wu(吴俊才), Tong Zheng(郑桐), Kenji Watanabe, Takashi Taniguchi, and Shengwei Jiang(姜生伟). Chin. Phys. B, 2026, 35(2): 027101.
[6] Two-dimensional kagome semiconductor Sc6S5X6 (X = Cl, Br, I) with trilayer kagome lattice
Jin-Ling Yan(闫金铃), Xing-Yu Wang(王星雨), Gen-Ping Wu(吴根平), Hao Wang(王浩), Ya-Jiao Ke(柯亚娇), Jiafu Wang(王嘉赋), Zhi-Hong Liu(刘志宏), and Jun-Hui Yuan(袁俊辉). Chin. Phys. B, 2026, 35(2): 027102.
[7] Electrocaloric refrigeration: From physical fundamentals to practical devices
Feiyu Zhang(张费宇), Tiannan Yang(杨天南), and Xiaoshi Qian(钱小石). Chin. Phys. B, 2026, 35(2): 027701.
[8] Experimental setup of NTSC SrII optical lattice clock
Feng Guo(郭峰), Jia-An Li(李家安), Yan-Yan Liu(刘艳艳), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2026, 35(2): 023702.
[9] Facile fabrication of twisted MoS2 bilayers by direct bonding
Yu-Tong Chen(陈雨彤), Jie-Ying Liu(刘杰英), Lan-Ying Zhou(周兰英), Hua Yu(余画), Tong Li(李童), Qing Guan(关清), Na Li(李娜), Yang Chai(柴扬), and Guang-Yu Zhang(张广宇). Chin. Phys. B, 2026, 35(1): 016803.
[10] Multicast-oriented key provision in hybrid DV/CV multi-domain quantum networks
Xinyu Chen(陈欣宇), Yuan Cao(曹原), Yuxiang Lu(陆宇翔), Yue Chen(陈越), Kunpeng Zheng(郑昆朋), Xiaosong Yu(郁小松), Yongli Zhao(赵永利), Jie Zhang(张杰), and Qin Wang(王琴). Chin. Phys. B, 2025, 34(9): 090301.
[11] Bond-resolved silicene on Au(111) substrate
Ye Chen(陈烨), Wenya Zhai(翟文雅), Haoyuan Zang(臧浩原), Zengfu Ou(欧增福), Donghui Guo(郭东辉), and Jingcheng Li(李竟成). Chin. Phys. B, 2025, 34(9): 096801.
[12] Semiregular tessellation of electronic lattices in untwisted bilayer graphene under anisotropic strain gradients
Zeyu Liu(刘泽宇), Xianghua Kong(孔祥华), Zhidan Li(李志聃), Zewen Wu(吴泽文), Linwei Zhou(周霖蔚), Cong Wang(王聪), and Wei Ji(季威). Chin. Phys. B, 2025, 34(9): 097309.
[13] Enhancing room-temperature thermoelectricity of SrTiO3 based superlattices via epitaxial strain
Yi Zhu(朱怡), Hao Liu(刘昊), Huilin Lai(赖辉琳), Zhenghua An(安正华), Yinyan Zhu(朱银燕), Lifeng Yin(殷立峰), and Jian Shen(沈健). Chin. Phys. B, 2025, 34(9): 097305.
[14] Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study
Wenlong Li(李文龙), Yu Liu(刘余), Zhendong Li(李振东), Pei Zhang(张培), Xinghua Li(李兴华), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2025, 34(9): 096302.
[15] Interacting bosons in a three-dimensional lattice
Dian-Cheng Zhang(张典承) and Shi-Jie Yang(杨师杰). Chin. Phys. B, 2025, 34(8): 080304.
No Suggested Reading articles found!