Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 016803    DOI: 10.1088/1674-1056/ae1c23
RAPID COMMUNICATION Prev   Next  

Facile fabrication of twisted MoS2 bilayers by direct bonding

Yu-Tong Chen(陈雨彤)1,2,†, Jie-Ying Liu(刘杰英)2,†,‡, Lan-Ying Zhou(周兰英)2, Hua Yu(余画)2, Tong Li(李童)2, Qing Guan(关清)2,5, Na Li(李娜)2, Yang Chai(柴扬)1,§, and Guang-Yu Zhang(张广宇)2,3,4,¶
1 Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
5 The School of Integrated Circuits, Sun Yat-sen University, Shenzhen 518107, China
Abstract  When stacking two-dimensional (2D) materials with a lattice mismatch and/or a small twist, moiré superlattice emerges with fascinating electronic and optical properties. The fabrication of such stacked 2D materials usually requires multiple transfer and stack processes, assisted by a certain transfer medium which needs to be removed afterwards, and it is very challenging to maintain pristine and clean surfaces/interfaces for these stacked structures. In this work, we report a facile direct bonding method for fabrication of twisted MoS2 bilayers with ultra-clean surfaces/interfaces. Novel interlayer interactions are revealed in the as-fabricated high-quality samples, leading to twist-angle related dispersion behavior of various Raman modes, such as layer breathing modes, shear modes and E2g modes, as well as indirect bandgap excitons. Field-effect transistors (FETs) of twisted MoS2 bilayers also exhibit angle-dependent performance, which could be attributed to the band structure evolution. This facile method holds significance for the future integration of pre-designed multilayer 2D materials and paves a way to explore underlying physical mechanisms and potential applications.
Keywords:  two-dimensional (2D) materials      direct bonding      moiré superlattice      twistronics  
Received:  09 September 2025      Revised:  28 October 2025      Accepted manuscript online:  06 November 2025
PACS:  68.65.Cd (Superlattices)  
  81.07.b  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: This work is supported by Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2021B0301030002), the National Key Research and Development Program (Grant No. 2021YFA1202900), and the National Natural Science Foundation of China (Grant Nos. 62204166 and 62404145).
Corresponding Authors:  Jie-Ying Liu, Yang Chai, Guang-Yu Zhang     E-mail:  jyliu@iphy.ac.cn;ychai@polyu.edu.hk;gyzhang@iphy.ac.cn

Cite this article: 

Yu-Tong Chen(陈雨彤), Jie-Ying Liu(刘杰英), Lan-Ying Zhou(周兰英), Hua Yu(余画), Tong Li(李童), Qing Guan(关清), Na Li(李娜), Yang Chai(柴扬), and Guang-Yu Zhang(张广宇) Facile fabrication of twisted MoS2 bilayers by direct bonding 2026 Chin. Phys. B 35 016803

[1] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[2] Spanton E M, Zibrov A A, Zhou H, Taniguchi T, Watanabe K, Zaletel M P and Young A F 2018 Science 360 62
[3] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H and Li X 2019 Nature 567 71
[4] Liu E, Barre E, Van Baren J, Wilson M, Taniguchi T, Watanabe K, Cui Y T, Gabor N M, Heinz T F, Chang Y C and Lui C H 2021 Nature 594 46
[5] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66
[6] Ramos-Alonso A, Remez B, Bennett D, Fernandes R M and Ochoa H 2025 Phys. Rev. Lett. 134 026501
[7] Lin M L, Tan Q H, Wu J B, Chen X S, Wang J H, Pan Y H, Zhang X, Cong X, Zhang J, Ji W, Hu P A, Liu K H and Tan P H 2018 ACS Nano 12 8770
[8] Zheng S, Sun L, Zhou X, Liu F, Liu Z, Shen Z and Fan H J 2015 Adv. Opt. Mater. 3 1600
[9] Sun L, Wang Z, Wang Y, Zhao L, Li Y, Chen B, Huang S, Zhang S, Wang W, Pei D, Fang H, Zhong S, Liu H, Zhang J, Tong L, Chen Y, Li Z, Rummeli M H, Novoselov K S, Peng H, Lin L and Liu Z 2021 Nat. Commun. 12 2391
[10] Xu M, Ji H, Zheng L, Li W, Wang J, Wang H, Luo L, Lu Q, Gan X, Liu Z, Wang X and Huang W 2024 Nat. Commun. 15 562
[11] Kang M A, Kim S J, Song W, Chang S, Park C Y, Myung S, Lim J, Lee S S and An K S 2017 Carbon 116 167
[12] Mannix A J, Ye A, Sung S H, Ray A, Mujid F, Park C, Lee M, Kang J H, Shreiner R, High A A, Muller D A, Hovden R and Park J 2022 Nat. Nanotechnol. 17 361
[13] Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R and Zhang G 2020 Nat. Commun. 11 2153
[14] Kim J H, Ko T J, Okogbue E, Han S S, Shawkat M S, Kaium M G, Oh K H, Chung H S and Jung Y 2019 Sci. Rep. 9 1641
[15] Yun S J, Chae S H, Kim H, Park J C, Park J H, Han G H, Lee J S, Kim S M, Oh H M, Seok J, Jeong M S, Kim K K and Lee Y H 2015 ACS Nano 9 5510
[16] Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Bøggild P and Booth T J 2016 Nat. Commun. 7 11894
[17] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, Leroy B J and Tutuc E 2016 Nano Lett. 16 1989
[18] Liu J, Zhao J, Li T, Ji D, Dai L, Li L, Wei Z, Li J, Wang Q, Yu H, Zhou L, Chen Y, Wu F, Zhu M, Sun H, Li Y, Zhang S, Tian J, Zhang X, Lu N, Bai X, Cao Z, Lin S, Wang S, Shi D, Li N, Du L, Yang W, Xian L and Zhang G 2025 Nat. Electron. 8 1038
[19] Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D and Zhang G 2020 Nano Lett. 20 7193
[20] Li L, Wang Q, Wu F, Xu Q, Tian J, Huang Z, Wang Q, Zhao X, Zhang Q, Fan Q, Li X, Peng Y, Zhang Y, Ji K, Zhi A, Sun H, Zhu M, Zhu J, Lu N, Lu Y, Wang S, Bai X, Xu Y, Yang W, Li N, Shi D, Xian L, Liu K, Du L and Zhang G 2024 Nat. Commun. 15 1825
[21] Zhang Y, Lee Y, Zhang W, Song D, Lee K, Zhao Y, Hao H, Zhao Z, Wang S, Kim K and Liu N 2023 Adv. Funct. Mater. 33 2212210
[22] Wu K, Wang H, Yang M, Liu L, Sun Z, Hu G, Song Y, Han X, Guo J, Wu K, Feng B, Shen C, Huang Y, Shi Y, Cheng Z, Yang H, Bao L, Pantelides S T and Gao H J 2024 Adv. Mater. 36 2313511
[23] McGilly L J, Kerelsky A, Finney N R, Shapovalov K, Shih E M, Ghiotto A, Zeng Y, Moore S L, Wu W, Bai Y, Watanabe K, Taniguchi T, Stengel M, Zhou L, Hone J, Zhu X, Basov D N, Dean C, Dreyer C E and Pasupathy A N 2020 Nat. Nanotechnol. 15 580
[24] Weston A, Zou Y, Enaldiev V, Summerfield A, Clark N, Zolyomi V, Graham A, Yelgel C, Magorrian S, Zhou M, Zultak J, Hopkinson D, Barinov A, Bointon T H, Kretinin A, Wilson N R, Beton P H, Fal’ko V I, Haigh S J and Gorbachev R 2020 Nat. Nanotechnol. 15 592
[25] Lin K, Holler J, Bauer J M, Parzefall P, Scheuck M, Peng B, Korn T, Bange S, Lupton J M and Schuller C 2021 Adv. Mater. 33 2008333
[26] Du L, Molas M R, Huang Z, Zhang G, Wang F and Sun Z 2023 Science 379 6639
[27] Lim S Y, Kim H, Choi Y W, Taniguchi T, Watanabe K, Choi H J and Cheong H 2023 ACS Nano 17 13938
[28] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and Leroy B J 2012 Nat. Phys. 8 382
[29] Lin M L, Tan Q H, Wu J Bin, Chen X S, Wang J H, Pan Y H, Zhang X, Cong X, Zhang J, Ji W, Hu P A, Liu K H and Tan P H 2018 ACS Nano 12 8770
[30] Wu Y, Wang S, Chen C, Zhou C, Chen K, Zhou J, Wang Z, Bie Y and Deng S 2024 Adv. Opt. Mater. 12 2301747
[31] Quan J, Linhart L, Lin M L, Lee D, Zhu J, Wang C Y, Hsu W T, Choi J, Embley J, Young C, Taniguchi T, Watanabe K, Shih C K, Lai K, MacDonald A H, Tan P H, Libisch F and Li X 2021 Nat. Mater. 20 1100
[32] Weston A, Zou Y, Enaldiev V, Summerfield A, Clark N, Zolyomi V, Graham A, Yelgel C, Magorrian S, Zhou M, Zultak J, Hopkinson D, Barinov A, Bointon T H, Kretinin A, Wilson N R, Beton P H, Fal’ko V I, Haigh S J and Gorbachev R 2020 Nat. Nanotechnol. 15 592
[33] Lee J U, Woo S, Park J, Park H C, Son Y W and Cheong H 2017 Nat. Commun. 8 1370
[34] Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G and Wang F 2014 Nat. Commun. 5 4966
[35] Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L and Zhang G 2023 Phys. Rev. Lett. 131 256201
[36] Xian L, Claassen M, Kiese D, Scherer M M, Trebst S, Kennes D M and Rubio A 2021 Nat. Commun. 12 5644
[37] Naik M H and Jain M 2018 Phys. Rev. Lett. 121 266401
[1] Orbital XY models in moiré superlattices
Yanqi Li(李彦琪), Yi-Jie Wang(王一杰), and Zhi-Da Song(宋志达). Chin. Phys. B, 2025, 34(2): 027303.
[2] Moiré physics in two-dimensional materials: Novel quantum phases and electronic properties
Zi-Yi Tian(田子弈), Si-Yu Li(李思宇), Hai-Tao Zhou(周海涛), Yu-Hang Jiang(姜宇航), and Jin-Hai Mao(毛金海). Chin. Phys. B, 2025, 34(2): 027301.
[3] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[4] Moiré superlattices arising from growth induced by screw dislocations in layered materials
Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Chin. Phys. B, 2024, 33(7): 077403.
[5] Peak structure in the interlayer conductance of Moiré superlattices
Yizhou Tao(陶懿洲), Chao Liu(刘超), Mingwen Xiao(肖明文), and Henan Fang(方贺男). Chin. Phys. B, 2024, 33(10): 107301.
[6] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[7] Spontaneous isospin polarization and quantum Hall ferromagnetism in a rhombohedral trilayer graphene superlattice
Xiangyan Han(韩香岩), Qianling Liu(刘倩伶), Ruirui Niu(牛锐锐), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Chunrui Han(韩春蕊), Kenji Watanabe, Takashi Taniguchi, Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(11): 117201.
[8] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[9] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[10] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[11] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[12] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[13] Electronic, optical property and carrier mobility of graphene, black phosphorus, and molybdenum disulfide based on the first principles
Congcong Wang(王聪聪), Xuesheng Liu(刘学胜), Zhiyong Wang(王智勇), Ming Zhao(赵明), Huan He(何欢), Jiyue Zou(邹吉跃). Chin. Phys. B, 2018, 27(11): 118106.
[14] Electronic structure of silicene
L. C. Lew Yan Voon (刘祿昌). Chin. Phys. B, 2015, 24(8): 087309.
[15] Field-effect transistors based on two-dimensional materials for logic applications
Wang Xin-Ran (王欣然), Shi Yi (施毅), Zhang Rong (张荣). Chin. Phys. B, 2013, 22(9): 098505.
No Suggested Reading articles found!