Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 016804    DOI: 10.1088/1674-1056/ae360b
LETTER Prev   Next  

A metastable state mediates the surface disordering of ice Ih

Zixiang Yan(颜子翔)1, Jiani Hong(洪嘉妮)1, Ye Tian(田野)1, Tiancheng Liang(梁天成)1, Limei Xu(徐莉梅)1,2,3, and Ying Jiang(江颖)1,2,3,4,†
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
2 Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
4 New Cornerstone Science Laboratory, Peking University, Beijing 100871, China
Abstract  Ice premelting, the formation of a quasi-liquid layer on ice surfaces below the bulk melting point, plays a crucial role in various processes, ranging from glacier dynamics to ice friction and surface chemistry. Despite intensive research, the microscopic structure of the premelting layer and underlying molecular mechanisms remain poorly understood. In this work, we studied the temperature- and pressure-dependent structural disordering of crystalline Ih (0001) surface near the onset of premelting on the atomic scale by qPlus-based cryogenic atomic force microscopy. The linear correlation between the density of planar local structure (PLS) and the fraction of disordered surface region showed that the PLS mediated early-stage premelting by serving as a metastable seeding state. Notably, the associated surface disordering is cooperative, extending over an area of roughly $\sim 2 $~nm$^{2}$ around a PLS. We further found a striking structural similarity between the kinetic-trapped regime below the surface crystallization temperature ($T_{\rm c}$) and the premelting-dominated regime above $ T_{\rm c}$. As the deposition pressure increased, the characteristic temperature dependence was preserved, with only $T_{\rm c}$ shifting to higher values due to kinetic effects. Finally, we proposed a surface phase diagram for ice Ih (0001) based on our experimental observations.
Keywords:  atomic force microscopy      ice      premelting      phase diagram  
Received:  19 December 2025      Revised:  04 January 2026      Accepted manuscript online:  09 January 2026
PACS:  68.35.Rh (Phase transitions and critical phenomena)  
  68.37.Ps (Atomic force microscopy (AFM))  
  68.47.-b (Solid-gas/vacuum interfaces: types of surfaces)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFA1400500 and 2025YFF1502400), the National Natural Science Foundation of China (Grant Nos. 92361302, 12250001, 12535001, and U22A20260), and the China Postdoctoral Science Foundation (Grant Nos. BX20230021, 2023T160011, and 2024M760068). J. H. acknowledges support from the National Program for Support of Top-notch Young professionals. Y.J. acknowledges support from Beijing Outstanding Young Scientist Program (Grant No. JWZQ20240101002) and the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE.
Corresponding Authors:  Ying Jiang     E-mail:  yjiang@pku.edu.cn

Cite this article: 

Zixiang Yan(颜子翔), Jiani Hong(洪嘉妮), Ye Tian(田野), Tiancheng Liang(梁天成), Limei Xu(徐莉梅), and Ying Jiang(江颖) A metastable state mediates the surface disordering of ice Ih 2026 Chin. Phys. B 35 016804

[1] Pettersson L G M, Henchman R H and Nilsson A 2016 Chem. Rev. 116 7459
[2] Bartels-Rausch T, Bergeron V, Cartwright J H E, Escribano R, Finney J L, Grothe H, Gutiérrez P J, Haapala J, Kuhs W F, Pettersson J B C, Price S D, Sainz-Díaz C I, Stokes D J, Strazzulla G, Thomson E S, Trinks H and Uras-Aytemiz N 2012 Rev. Mod. Phys. 84 885
[3] Dash J G, Rempel A W and Wettlaufer J S 2006 Rev. Mod. Phys. 78 695
[4] Slater B and Michaelides A 2019 Nat. Rev. Chem. 3 172
[5] Dash J G, Haiying F and Wettlaufer J S 1995 Rep. Prog. Phys. 58 115
[6] Canale L, Comtet J, Nigues A, Cohen C, Clanet C, Siria A and Bocquet L 2019 Phys. Rev. X 9 041025
[7] Sánchez M A, Kling T, Ishiyama T, van Zadel M J, Bisson P J, Mezger M, Jochum M N, Cyran J D, Smit W J, Bakker H J, Shultz M J, Morita A, Donadio D, Nagata Y, Bonn M and Backus E H G 2017 Proc. Natl Acad. Sci. USA 114 227
[8] Wei X, Miranda P B and Shen Y R 2001 Phys. Rev. Lett. 86 1554
[9] Conde M M, Vega C and Patrykiejew A 2008 J. Chem.Phys. 129 014702
[10] Dosch H, Lied A and Bilgram J H 1995 Surf. Sci. 327 145
[11] Hendrik B, Ogletree D F, Charles S F, Zahid H and Miquel S 2002 J. Phys.: Condens. Matter 14 L227
[12] Sazaki G, Zepeda S, Nakatsubo S, Yokomine M and Furukawa Y 2012 Proc. Natl Acad. Sci. USA 109 1052
[13] Pickering I, Paleico M, Sirkin Y A P, Scherlis D A and Factorovich M H 2018 J. Phys. Chem. B 122 4880
[14] Dosch H, Lied A and Bilgram J H 1996 Surf. Sci. 366 43
[15] Fletcher N H 1968 Phil. Mag. 18 1287
[16] Sazaki G, Asakawa H, Nagashima K, Nakatsubo S and Furukawa Y 2013 Cryst. Growth Des. 13 1761
[17] Lin Y, Zhou T, Rosenmann N D, Yu L, Gage T E, Banik S, Neogi A, Chan H, Lei A, Lin X M, Holt M, Arslan I and Wen J 2023 Proc. Natl Acad. Sci. USA 120 e2304148120
[18] Schöder S, Reichert H, Schröder H, Mezger M, Okasinski J S, Honkimäki V, Bilgram J and Dosch H 2009 Phys. Rev. Lett. 103 095502
[19] Suter M T, Andersson P U and Pettersson J B C 2006 J. Chem. Phys. 125 174704
[20] Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelínek P 2014 Phys. Rev. B 90 085421
[21] Peng J, Guo J, Hapala P, Cao D, Ma R, Cheng B, Xu L, Ondráček M, Jelínek P, Wang E and Jiang Y 2018 Nat. Commun. 9 122
[22] Giessibl F J 2003 Rev. Mod. Phys. 75 949
[23] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110
[24] Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G and Jiang Y 2020 Nature 577 60
[25] Shiotari A and Sugimoto Y 2017 Nat. Commun. 8 14313
[26] Hong J, Tian Y, Liang T, Liu X, Song Y, Guan D, Yan Z, Guo J, Tang B, Cao D, Guo J, Chen J, Pan D, Xu L M, Wang E G and Jiang Y 2024 Nature 630 375
[27] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez- Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[28] Tang B, Lo C H, Liang T, Hong J, Qin M, Song Y, Cao D, Jiang Y and Xu L 2025 Phys. Rev. X 15 041048
[29] Dowell L G and Rinfret A P 1960 Nature 188 1144
[30] Amann-Winkel K, Böhmer R, Fujara F, Gainaru C, Geil B and Loerting T 2016 Rev. Mod. Phys. 88 011002
[31] Loerting T and Giovambattista N 2006 J. Phys.: Condens. Matter 18 R919
[32] Zondlo M A, Onasch T B, Warshawsky M S, Tolbert M A, Mallick G, Arentz P and Robinson M S 1997 J. Phys. Chem. B 101 10887
[33] Gallo P, Amann-Winkel K, Angell C A, Anisimov M A, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos A Z, Russo J, Sellberg J A, Stanley H E, Tanaka H, Vega C, Xu L and Pettersson L G M 2016 Chem. Rev. 116 7463
[1] Facile fabrication of twisted MoS2 bilayers by direct bonding
Yu-Tong Chen(陈雨彤), Jie-Ying Liu(刘杰英), Lan-Ying Zhou(周兰英), Hua Yu(余画), Tong Li(李童), Qing Guan(关清), Na Li(李娜), Yang Chai(柴扬), and Guang-Yu Zhang(张广宇). Chin. Phys. B, 2026, 35(1): 016803.
[2] Enhancing room-temperature thermoelectricity of SrTiO3 based superlattices via epitaxial strain
Yi Zhu(朱怡), Hao Liu(刘昊), Huilin Lai(赖辉琳), Zhenghua An(安正华), Yinyan Zhu(朱银燕), Lifeng Yin(殷立峰), and Jian Shen(沈健). Chin. Phys. B, 2025, 34(9): 097305.
[3] Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study
Wenlong Li(李文龙), Yu Liu(刘余), Zhendong Li(李振东), Pei Zhang(张培), Xinghua Li(李兴华), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2025, 34(9): 096302.
[4] Multicast-oriented key provision in hybrid DV/CV multi-domain quantum networks
Xinyu Chen(陈欣宇), Yuan Cao(曹原), Yuxiang Lu(陆宇翔), Yue Chen(陈越), Kunpeng Zheng(郑昆朋), Xiaosong Yu(郁小松), Yongli Zhao(赵永利), Jie Zhang(张杰), and Qin Wang(王琴). Chin. Phys. B, 2025, 34(9): 090301.
[5] Bond-resolved silicene on Au(111) substrate
Ye Chen(陈烨), Wenya Zhai(翟文雅), Haoyuan Zang(臧浩原), Zengfu Ou(欧增福), Donghui Guo(郭东辉), and Jingcheng Li(李竟成). Chin. Phys. B, 2025, 34(9): 096801.
[6] Semiregular tessellation of electronic lattices in untwisted bilayer graphene under anisotropic strain gradients
Zeyu Liu(刘泽宇), Xianghua Kong(孔祥华), Zhidan Li(李志聃), Zewen Wu(吴泽文), Linwei Zhou(周霖蔚), Cong Wang(王聪), and Wei Ji(季威). Chin. Phys. B, 2025, 34(9): 097309.
[7] Interacting bosons in a three-dimensional lattice
Dian-Cheng Zhang(张典承) and Shi-Jie Yang(杨师杰). Chin. Phys. B, 2025, 34(8): 080304.
[8] Thermodynamics of classical one-dimensional generalized nonlinear Klein-Gordon lattice model
Hu-Wei Jia(贾虎伟) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2025, 34(8): 080501.
[9] Dark-gap solitons with mixed nonlinear and linear lattices
Xue-Fei Zhang(张雪菲), Xiao-Yang Wang(王笑阳), Hui-Lian Wei(魏慧莲), and Tian-Fu Xu(徐天赋). Chin. Phys. B, 2025, 34(8): 080303.
[10] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[11] Performance enhancement of IGZO thin-film transistors via ultra-thin HfO2 and the implementation of logic device functionality
Xuyang Li(栗旭阳), Bin Liu(刘斌), Xianwen Liu(刘贤文), Shuo Zhang(张硕), Congyang Wen(温丛阳), Jin Zhang(张进), Haifeng Liang(梁海锋), Guangcai Yuan(袁广才), Jianshe Xue(薛建设), and Zhinong Yu(喻志农). Chin. Phys. B, 2025, 34(7): 076101.
[12] Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新). Chin. Phys. B, 2025, 34(7): 077102.
[13] Surface solitons in Kerr-type nonlinear media with chirped lattices
Xiaoyang Wang(王笑阳), Huilian Wei(魏慧莲), Xuefei Zhang(张雪菲), and Tianfu Xu(徐天赋). Chin. Phys. B, 2025, 34(6): 060302.
[14] Adsorption-modulated dynamical stability of nanobubbles at the solid-liquid interface
Guiyuan Huang(黄桂源), Lili Lan(蓝礼礼), Binghai Wen(闻炳海), Li Yang(阳丽), and Yong Yang(杨勇). Chin. Phys. B, 2025, 34(6): 064702.
[15] Layer-dependent structural stability and electronic properties of CrPS4 under high pressure
Jian Zhu(朱健), Dengman Feng(冯登满), Liangyu Wang(王亮予), Liang Li(李亮), Fangfei Li(李芳菲), Qiang Zhou(周强), and Yalan Yan(闫雅兰). Chin. Phys. B, 2025, 34(6): 066102.
No Suggested Reading articles found!