|
|
|
A metastable state mediates the surface disordering of ice Ih |
| Zixiang Yan(颜子翔)1, Jiani Hong(洪嘉妮)1, Ye Tian(田野)1, Tiancheng Liang(梁天成)1, Limei Xu(徐莉梅)1,2,3, and Ying Jiang(江颖)1,2,3,4,† |
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; 2 Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; 4 New Cornerstone Science Laboratory, Peking University, Beijing 100871, China |
|
|
|
|
Abstract Ice premelting, the formation of a quasi-liquid layer on ice surfaces below the bulk melting point, plays a crucial role in various processes, ranging from glacier dynamics to ice friction and surface chemistry. Despite intensive research, the microscopic structure of the premelting layer and underlying molecular mechanisms remain poorly understood. In this work, we studied the temperature- and pressure-dependent structural disordering of crystalline Ih (0001) surface near the onset of premelting on the atomic scale by qPlus-based cryogenic atomic force microscopy. The linear correlation between the density of planar local structure (PLS) and the fraction of disordered surface region showed that the PLS mediated early-stage premelting by serving as a metastable seeding state. Notably, the associated surface disordering is cooperative, extending over an area of roughly $\sim 2 $~nm$^{2}$ around a PLS. We further found a striking structural similarity between the kinetic-trapped regime below the surface crystallization temperature ($T_{\rm c}$) and the premelting-dominated regime above $ T_{\rm c}$. As the deposition pressure increased, the characteristic temperature dependence was preserved, with only $T_{\rm c}$ shifting to higher values due to kinetic effects. Finally, we proposed a surface phase diagram for ice Ih (0001) based on our experimental observations.
|
Received: 19 December 2025
Revised: 04 January 2026
Accepted manuscript online: 09 January 2026
|
|
PACS:
|
68.35.Rh
|
(Phase transitions and critical phenomena)
|
| |
68.37.Ps
|
(Atomic force microscopy (AFM))
|
| |
68.47.-b
|
(Solid-gas/vacuum interfaces: types of surfaces)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFA1400500 and 2025YFF1502400), the National Natural Science Foundation of China (Grant Nos. 92361302, 12250001, 12535001, and U22A20260), and the China Postdoctoral Science Foundation (Grant Nos. BX20230021, 2023T160011, and 2024M760068). J. H. acknowledges support from the National Program for Support of Top-notch Young professionals. Y.J. acknowledges support from Beijing Outstanding Young Scientist Program (Grant No. JWZQ20240101002) and the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE. |
Corresponding Authors:
Ying Jiang
E-mail: yjiang@pku.edu.cn
|
Cite this article:
Zixiang Yan(颜子翔), Jiani Hong(洪嘉妮), Ye Tian(田野), Tiancheng Liang(梁天成), Limei Xu(徐莉梅), and Ying Jiang(江颖) A metastable state mediates the surface disordering of ice Ih 2026 Chin. Phys. B 35 016804
|
[1] Pettersson L G M, Henchman R H and Nilsson A 2016 Chem. Rev. 116 7459 [2] Bartels-Rausch T, Bergeron V, Cartwright J H E, Escribano R, Finney J L, Grothe H, Gutiérrez P J, Haapala J, Kuhs W F, Pettersson J B C, Price S D, Sainz-Díaz C I, Stokes D J, Strazzulla G, Thomson E S, Trinks H and Uras-Aytemiz N 2012 Rev. Mod. Phys. 84 885 [3] Dash J G, Rempel A W and Wettlaufer J S 2006 Rev. Mod. Phys. 78 695 [4] Slater B and Michaelides A 2019 Nat. Rev. Chem. 3 172 [5] Dash J G, Haiying F and Wettlaufer J S 1995 Rep. Prog. Phys. 58 115 [6] Canale L, Comtet J, Nigues A, Cohen C, Clanet C, Siria A and Bocquet L 2019 Phys. Rev. X 9 041025 [7] Sánchez M A, Kling T, Ishiyama T, van Zadel M J, Bisson P J, Mezger M, Jochum M N, Cyran J D, Smit W J, Bakker H J, Shultz M J, Morita A, Donadio D, Nagata Y, Bonn M and Backus E H G 2017 Proc. Natl Acad. Sci. USA 114 227 [8] Wei X, Miranda P B and Shen Y R 2001 Phys. Rev. Lett. 86 1554 [9] Conde M M, Vega C and Patrykiejew A 2008 J. Chem.Phys. 129 014702 [10] Dosch H, Lied A and Bilgram J H 1995 Surf. Sci. 327 145 [11] Hendrik B, Ogletree D F, Charles S F, Zahid H and Miquel S 2002 J. Phys.: Condens. Matter 14 L227 [12] Sazaki G, Zepeda S, Nakatsubo S, Yokomine M and Furukawa Y 2012 Proc. Natl Acad. Sci. USA 109 1052 [13] Pickering I, Paleico M, Sirkin Y A P, Scherlis D A and Factorovich M H 2018 J. Phys. Chem. B 122 4880 [14] Dosch H, Lied A and Bilgram J H 1996 Surf. Sci. 366 43 [15] Fletcher N H 1968 Phil. Mag. 18 1287 [16] Sazaki G, Asakawa H, Nagashima K, Nakatsubo S and Furukawa Y 2013 Cryst. Growth Des. 13 1761 [17] Lin Y, Zhou T, Rosenmann N D, Yu L, Gage T E, Banik S, Neogi A, Chan H, Lei A, Lin X M, Holt M, Arslan I and Wen J 2023 Proc. Natl Acad. Sci. USA 120 e2304148120 [18] Schöder S, Reichert H, Schröder H, Mezger M, Okasinski J S, Honkimäki V, Bilgram J and Dosch H 2009 Phys. Rev. Lett. 103 095502 [19] Suter M T, Andersson P U and Pettersson J B C 2006 J. Chem. Phys. 125 174704 [20] Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R and Jelínek P 2014 Phys. Rev. B 90 085421 [21] Peng J, Guo J, Hapala P, Cao D, Ma R, Cheng B, Xu L, Ondráček M, Jelínek P, Wang E and Jiang Y 2018 Nat. Commun. 9 122 [22] Giessibl F J 2003 Rev. Mod. Phys. 75 949 [23] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110 [24] Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G and Jiang Y 2020 Nature 577 60 [25] Shiotari A and Sugimoto Y 2017 Nat. Commun. 8 14313 [26] Hong J, Tian Y, Liang T, Liu X, Song Y, Guan D, Yan Z, Guo J, Tang B, Cao D, Guo J, Chen J, Pan D, Xu L M, Wang E G and Jiang Y 2024 Nature 630 375 [27] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez- Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705 [28] Tang B, Lo C H, Liang T, Hong J, Qin M, Song Y, Cao D, Jiang Y and Xu L 2025 Phys. Rev. X 15 041048 [29] Dowell L G and Rinfret A P 1960 Nature 188 1144 [30] Amann-Winkel K, Böhmer R, Fujara F, Gainaru C, Geil B and Loerting T 2016 Rev. Mod. Phys. 88 011002 [31] Loerting T and Giovambattista N 2006 J. Phys.: Condens. Matter 18 R919 [32] Zondlo M A, Onasch T B, Warshawsky M S, Tolbert M A, Mallick G, Arentz P and Robinson M S 1997 J. Phys. Chem. B 101 10887 [33] Gallo P, Amann-Winkel K, Angell C A, Anisimov M A, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos A Z, Russo J, Sellberg J A, Stanley H E, Tanaka H, Vega C, Xu L and Pettersson L G M 2016 Chem. Rev. 116 7463 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|