Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097309    DOI: 10.1088/1674-1056/adfb54
Special Issue: SPECIAL TOPIC — Moiré physics in two-dimensional materials
SPECIAL TOPIC — Moiré physics in two-dimensional materials Prev   Next  

Semiregular tessellation of electronic lattices in untwisted bilayer graphene under anisotropic strain gradients

Zeyu Liu(刘泽宇)1,2,3,†, Xianghua Kong(孔祥华)1,†,‡, Zhidan Li(李志聃)1, Zewen Wu(吴泽文)1, Linwei Zhou(周霖蔚)1, Cong Wang(王聪)2,3, and Wei Ji(季威)2,3,§
1 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
2 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, School of Physics, Renmin University of China, Beijing 100872, China;
3 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
Abstract  Two-dimensional (2D) moiré superlattices have emerged as a versatile platform for uncovering exotic quantum phases, many of which arise in bilayer systems exhibiting Archimedean tessellation patterns such as triangular, hexagonal, and kagome lattices. Here, we propose a strategy to engineer semiregular tessellation patterns in untwisted bilayer graphene by applying anisotropic epitaxial tensile strain (AETS) along crystallographic directions. Through force-field and first-principles calculations, we demonstrate that AETS can induce a rich variety of semiregular tessellation geometries, including truncated hextille, prismatic pentagon, and brick-phase arrangements. Characteristic electronic Dirac and flat bands of the lattice models associated with these semiregular tessellations are observed near the Fermi level, arising from interlayer interactions generated by the spatial rearrangement of AB, BA, and SP domains. Furthermore, the real-space observations of electronic kagome, distorted Lieb, brick-like, and one-dimensional stripe lattices demonstrate that AETS enables tunable semiregular tessellation lattices. Our study identifies AETS as a promising new degree of freedom in moiré engineering, offering a reproducible and scalable platform for exploring exotic electronic lattices in moiré systems.
Keywords:  moiré bilayer      semiregular tessellation      electronic lattice      density functional theory  
Received:  12 May 2025      Revised:  24 July 2025      Accepted manuscript online:  14 August 2025
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  81.05.ue (Graphene)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  68.65.Cd (Superlattices)  
Fund: We thank Dr. Kui Gong, Dr. Yibin Hu, and Dr. Yin Wang (all from HZWTECH) and Prof. Yiqi Zhang for helpful discussions. This project was supported by the National Natural Science Foundation of China (Grant Nos. 52461160327, 92477205, 12474173, and 12104313), the National Key R&D Program of China (Grant No. 2023YFA1406500), the Department of Science and Technology of Guangdong Province (Grant No. 2021QN02L820), Shenzhen Science and Technology Program (Grant No. RCYX20231211090126026, the Stable Support Plan Program 20220810161616001), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 22XNKJ30).
Corresponding Authors:  Xianghua Kong, Wei Ji     E-mail:  kongxianghuaphysics@szu.edu.cn;wji@ruc.edu.cn

Cite this article: 

Zeyu Liu(刘泽宇), Xianghua Kong(孔祥华), Zhidan Li(李志聃), Zewen Wu(吴泽文), Linwei Zhou(周霖蔚), Cong Wang(王聪), and Wei Ji(季威) Semiregular tessellation of electronic lattices in untwisted bilayer graphene under anisotropic strain gradients 2025 Chin. Phys. B 34 097309

[1] Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A and Young A F 2021 Nat. Rev. Mater. 6 201
[2] Sinner A, Pantaleon P A and Guinea F 2023 Phys. Rev. Lett. 131 166402
[3] Tian Z Y, Li S Y, Zhou H T, Jiang Y H and Mao J H 2025 Chin. Phys. B 34 027301
[6] Saito Y, Ge J,Watanabe K, Taniguchi T and Young A F 2020 Nat. Phys. 16 926
[7] Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J and Refael G 2019 Nat. Phys. 15 1174
[8] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[9] Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A 2021 Nature 600 439
[10] Ding D, Niu R, Han X, Qu Z, Wang Z, Li Z, Liu Q, Han C and Lu J 2023 Chin. Phys. B 32 067204
[11] Xian L, Kennes D M, Tancogne-Dejean N, Altarelli M and Rubio A 2019 Nano Lett. 19 4934
[12] Walet N R and Guinea F 2021 Phys. Rev. B 103 125427
[13] Zhou J, Kong X, Sekhar M C, Lin J, Le Goualher F, Xu R, Wang X, Chen Y, Zhou Y, Zhu C, LuW, Liu F, Tang B, Guo Z, Zhu C, Cheng Z, Yu T, Suenaga K, Sun D, Ji W and Liu Z 2019 ACS Nano 13 10929
[14] Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N and Rubio A 2021 Nat. Phys. 17 155
[15] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686
[16] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
[17] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J and Mak K F 2021 Nature 600 641
[18] Yu J, Herzog-Arbeitman J, Wang M, Vafek O, Bernevig B A and Regnault N 2024 Phys. Rev. B 109 045147
[19] Park D, Park C, Yananose K, Ko E, Kim B, Engelke R, Zhang X, Davydov K, Green M, Kim H M, Park S H, Lee J H, Kim S G, Kim H, Watanabe K, Taniguchi T, Yang S M, Wang K, Kim P, Son Y W and Yoo H 2025 Nature 641 896
[20] Ohgushi K, Murakami S and Nagaosa N 2000 Phys. Rev. B 62 R6065
[21] Escudero F, Sinner A, Zhan Z, Pantaleón P A and Guinea F 2024 Phys. Rev. Res. 6 023203
[22] Bi Z, Yuan N F Q and Fu L 2019 Phys. Rev. B 100 035448
[23] Kögl M, Soubelet P, Brotons-Gisbert M, Stier A V, Gerardot B D and Finley J J 2023 npj 2D Mater. Appl. 7 32
[24] Li Y, Yuan Q, Guo D, Lou C, Cui X, Mei G, Petek H, Cao L, Ji W and Feng M 2023 Adv. Mater. 35 2300572
[25] Li S, Shi X, Li J, He C, Ouyang T, Tang C and Zhong J 2025 J. Appl. Phys. 137 083902
[26] Liu Z, Kong X,Wu Z, Zhou L, Qiao J,Wang C, Lau S P and Ji W 2025 Nanoscale Horiz. 10 1956
[27] Plimpton S 1995 J. Comput. Phys. 117 1
[28] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
[29] Kolmogorov A N and Crespi V H 2005 Phys. Rev. B 71 235415
[30] Michaud-Rioux V, Zhang L and Guo H 2016 J. Comput. Phys. 307 593
[31] Argentero G, Mittelberger A, Reza Ahmadpour Monazam M, Cao Y, Pennycook T J, Mangler C, Kramberger C, Kotakoski J, Geim A and Meyer J C 2017 Nano Lett. 17 1409
[32] Mao Y,WangWL,Wei D, Kaxiras E and Sodroski J G 2011 ACS Nano 5 1395
[33] Wang J and Tosatti E 2024 Proc. Natl. Acad. Sci. USA 121 e2418390121
[34] Borysiuk J, Sołtys J and Piechota J 2011 J. Appl. Phys. 109 093523
[35] Ould Ne M L, Boujnah M, Benyoussef A and Kenz A E 2016 J. Supercond. Nov. Magn. 30 1263
[36] Oliver C, Nabari D, Price H M, Ricci L and Carusotto I 2023 arXiv:2310.18325 [physics.optics]
[37] Liu Y, Wang Y, Hu N C, Lin J Y, Lee C H and Zhang X 2020 Phys. Rev. B 102 035142
[38] Jiang W, Kang M, Huang H, Xu H, Low T and Liu F 2019 Phys. Rev. B 99 125131
[39] He C, Li S, Zhang Y, Fu Z, Li J and Zhong J 2025 Phys. Rev. B 111 L081404
[40] Li S, Shi X, Li J, He C, Ouyang T, Tang C and Zhong J 2024 Phys. Rev. B 110 115115
[41] Yao F, Rossi D, Gabrovski I A, Multian V, Hua N, Watanabe K, Taniguchi T, Gibertini M, Gutiérrez-Lezama I, Rademaker L and Morpurgo A F 2024 Nat. Commun. 15 10377
[42] Jin Y, Ren Q, Liu J, Zhang Y, Zheng H and Zhao P 2022 Exp. Mech. 62 761
[43] Que Y, Xiao W, Fei X, Chen H, Huang L, Du S X and Gao H J 2014 Appl. Phys. Lett. 104 093110
[44] Lu J, Neto A H and Loh K P 2012 Nat. Commun. 3 823
[45] Ding P, Yan J, Wang J, Han X, Yang W, Chen H, Zhang D, Huang M, Zhao J, Yang S, Xue T T, Liu L, Dai Y, Hou Y, Zhang S, Xu X, Wang Y and Huang Y 2024 Nano Lett. 24 8208
[4] Han J, Lai K, Yu X, Chen J, Guo H and Dai J 2023 Chin. Phys. Lett. 40 067801
[5] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[1] Ab initio prediction of ground-state magnetic ordering and high-pressure magnetic phase transition of uranium mononitride
Jing-Jing Zheng(郑晶晶), Yuxi Chen(陈禹西), Chengxiang Zhao(赵承祥), Junfeng Zhang(张均锋), Ping Zhang(张平), Bao-Tian Wang(王保田), and Jiang-Jiang Ma(马江将). Chin. Phys. B, 2025, 34(8): 087101.
[2] Wideband near-infrared emission from GaScO3:Cr3+ phosphors with a perovskite structure
Chong Li(李翀), Mengyu Zhang(张梦宇), Chuancheng Zhang(张传成), Wenzhi Su(宿文志), Yong Zou(邹勇), Shoujun Ding(丁守军), and Qingli Zhang(张庆礼). Chin. Phys. B, 2025, 34(8): 087502.
[3] Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling
Zhuoqun Wen(文卓群), Haiyu Zhu(诸海渝), Wen-Hao Liu(刘文浩), Zhi Wang(王峙), Wen Xiong(熊稳), and Xingzhan Wei(魏兴战). Chin. Phys. B, 2025, 34(7): 077103.
[4] Modulating electronic properties of carbon nanotube via constructing one-dimensional vdW heterostructures
Wenqi Lv(吕雯祺), Weili Li(李伟立), Wei Ji(季威), and Yanning Zhang(张妍宁). Chin. Phys. B, 2025, 34(6): 067303.
[5] Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(6): 067101.
[6] High-order harmonic generation of methane in an elliptically polarized field
Shu-Shan Zhou(周书山), Yu-Long Li(李玉龙), Zhi-Xue Zhao(赵志学), Man Xing(幸满), Nan Xu(许楠), Hao Wang(王浩), Jun Wang(王俊), Xi Zhao(赵曦), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2025, 34(6): 063202.
[7] Photophysical property of fluorescent guanine analogs for selectively recognizing acetylated cytosine: A theoretical study
Xiaolin Chen(陈晓琳), Xixi Cui(崔习习), Yongkang Lyu(吕永康), Chenyang Zhang(张晨阳), Changzhe Zhang(张常哲), and Qingtian Meng(孟庆田). Chin. Phys. B, 2025, 34(5): 053102.
[8] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[9] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[10] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[11] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[12] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[13] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[14] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[15] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
No Suggested Reading articles found!