|
Special Issue:
SPECIAL TOPIC — Moiré physics in two-dimensional materials
|
| SPECIAL TOPIC — Moiré physics in two-dimensional materials |
Prev
Next
|
|
|
Semiregular tessellation of electronic lattices in untwisted bilayer graphene under anisotropic strain gradients |
| Zeyu Liu(刘泽宇)1,2,3,†, Xianghua Kong(孔祥华)1,†,‡, Zhidan Li(李志聃)1, Zewen Wu(吴泽文)1, Linwei Zhou(周霖蔚)1, Cong Wang(王聪)2,3, and Wei Ji(季威)2,3,§ |
1 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; 2 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, School of Physics, Renmin University of China, Beijing 100872, China; 3 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China |
|
|
|
|
Abstract Two-dimensional (2D) moiré superlattices have emerged as a versatile platform for uncovering exotic quantum phases, many of which arise in bilayer systems exhibiting Archimedean tessellation patterns such as triangular, hexagonal, and kagome lattices. Here, we propose a strategy to engineer semiregular tessellation patterns in untwisted bilayer graphene by applying anisotropic epitaxial tensile strain (AETS) along crystallographic directions. Through force-field and first-principles calculations, we demonstrate that AETS can induce a rich variety of semiregular tessellation geometries, including truncated hextille, prismatic pentagon, and brick-phase arrangements. Characteristic electronic Dirac and flat bands of the lattice models associated with these semiregular tessellations are observed near the Fermi level, arising from interlayer interactions generated by the spatial rearrangement of AB, BA, and SP domains. Furthermore, the real-space observations of electronic kagome, distorted Lieb, brick-like, and one-dimensional stripe lattices demonstrate that AETS enables tunable semiregular tessellation lattices. Our study identifies AETS as a promising new degree of freedom in moiré engineering, offering a reproducible and scalable platform for exploring exotic electronic lattices in moiré systems.
|
Received: 12 May 2025
Revised: 24 July 2025
Accepted manuscript online: 14 August 2025
|
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
| |
81.05.ue
|
(Graphene)
|
| |
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
| |
68.65.Cd
|
(Superlattices)
|
|
| Fund: We thank Dr. Kui Gong, Dr. Yibin Hu, and Dr. Yin Wang (all from HZWTECH) and Prof. Yiqi Zhang for helpful discussions. This project was supported by the National Natural Science Foundation of China (Grant Nos. 52461160327, 92477205, 12474173, and 12104313), the National Key R&D Program of China (Grant No. 2023YFA1406500), the Department of Science and Technology of Guangdong Province (Grant No. 2021QN02L820), Shenzhen Science and Technology Program (Grant No. RCYX20231211090126026, the Stable Support Plan Program 20220810161616001), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 22XNKJ30). |
Corresponding Authors:
Xianghua Kong, Wei Ji
E-mail: kongxianghuaphysics@szu.edu.cn;wji@ruc.edu.cn
|
Cite this article:
Zeyu Liu(刘泽宇), Xianghua Kong(孔祥华), Zhidan Li(李志聃), Zewen Wu(吴泽文), Linwei Zhou(周霖蔚), Cong Wang(王聪), and Wei Ji(季威) Semiregular tessellation of electronic lattices in untwisted bilayer graphene under anisotropic strain gradients 2025 Chin. Phys. B 34 097309
|
[1] Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A and Young A F 2021 Nat. Rev. Mater. 6 201 [2] Sinner A, Pantaleon P A and Guinea F 2023 Phys. Rev. Lett. 131 166402 [3] Tian Z Y, Li S Y, Zhou H T, Jiang Y H and Mao J H 2025 Chin. Phys. B 34 027301 [6] Saito Y, Ge J,Watanabe K, Taniguchi T and Young A F 2020 Nat. Phys. 16 926 [7] Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J and Refael G 2019 Nat. Phys. 15 1174 [8] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [9] Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A 2021 Nature 600 439 [10] Ding D, Niu R, Han X, Qu Z, Wang Z, Li Z, Liu Q, Han C and Lu J 2023 Chin. Phys. B 32 067204 [11] Xian L, Kennes D M, Tancogne-Dejean N, Altarelli M and Rubio A 2019 Nano Lett. 19 4934 [12] Walet N R and Guinea F 2021 Phys. Rev. B 103 125427 [13] Zhou J, Kong X, Sekhar M C, Lin J, Le Goualher F, Xu R, Wang X, Chen Y, Zhou Y, Zhu C, LuW, Liu F, Tang B, Guo Z, Zhu C, Cheng Z, Yu T, Suenaga K, Sun D, Ji W and Liu Z 2019 ACS Nano 13 10929 [14] Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N and Rubio A 2021 Nat. Phys. 17 155 [15] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686 [16] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [17] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J and Mak K F 2021 Nature 600 641 [18] Yu J, Herzog-Arbeitman J, Wang M, Vafek O, Bernevig B A and Regnault N 2024 Phys. Rev. B 109 045147 [19] Park D, Park C, Yananose K, Ko E, Kim B, Engelke R, Zhang X, Davydov K, Green M, Kim H M, Park S H, Lee J H, Kim S G, Kim H, Watanabe K, Taniguchi T, Yang S M, Wang K, Kim P, Son Y W and Yoo H 2025 Nature 641 896 [20] Ohgushi K, Murakami S and Nagaosa N 2000 Phys. Rev. B 62 R6065 [21] Escudero F, Sinner A, Zhan Z, Pantaleón P A and Guinea F 2024 Phys. Rev. Res. 6 023203 [22] Bi Z, Yuan N F Q and Fu L 2019 Phys. Rev. B 100 035448 [23] Kögl M, Soubelet P, Brotons-Gisbert M, Stier A V, Gerardot B D and Finley J J 2023 npj 2D Mater. Appl. 7 32 [24] Li Y, Yuan Q, Guo D, Lou C, Cui X, Mei G, Petek H, Cao L, Ji W and Feng M 2023 Adv. Mater. 35 2300572 [25] Li S, Shi X, Li J, He C, Ouyang T, Tang C and Zhong J 2025 J. Appl. Phys. 137 083902 [26] Liu Z, Kong X,Wu Z, Zhou L, Qiao J,Wang C, Lau S P and Ji W 2025 Nanoscale Horiz. 10 1956 [27] Plimpton S 1995 J. Comput. Phys. 117 1 [28] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783 [29] Kolmogorov A N and Crespi V H 2005 Phys. Rev. B 71 235415 [30] Michaud-Rioux V, Zhang L and Guo H 2016 J. Comput. Phys. 307 593 [31] Argentero G, Mittelberger A, Reza Ahmadpour Monazam M, Cao Y, Pennycook T J, Mangler C, Kramberger C, Kotakoski J, Geim A and Meyer J C 2017 Nano Lett. 17 1409 [32] Mao Y,WangWL,Wei D, Kaxiras E and Sodroski J G 2011 ACS Nano 5 1395 [33] Wang J and Tosatti E 2024 Proc. Natl. Acad. Sci. USA 121 e2418390121 [34] Borysiuk J, Sołtys J and Piechota J 2011 J. Appl. Phys. 109 093523 [35] Ould Ne M L, Boujnah M, Benyoussef A and Kenz A E 2016 J. Supercond. Nov. Magn. 30 1263 [36] Oliver C, Nabari D, Price H M, Ricci L and Carusotto I 2023 arXiv:2310.18325 [physics.optics] [37] Liu Y, Wang Y, Hu N C, Lin J Y, Lee C H and Zhang X 2020 Phys. Rev. B 102 035142 [38] Jiang W, Kang M, Huang H, Xu H, Low T and Liu F 2019 Phys. Rev. B 99 125131 [39] He C, Li S, Zhang Y, Fu Z, Li J and Zhong J 2025 Phys. Rev. B 111 L081404 [40] Li S, Shi X, Li J, He C, Ouyang T, Tang C and Zhong J 2024 Phys. Rev. B 110 115115 [41] Yao F, Rossi D, Gabrovski I A, Multian V, Hua N, Watanabe K, Taniguchi T, Gibertini M, Gutiérrez-Lezama I, Rademaker L and Morpurgo A F 2024 Nat. Commun. 15 10377 [42] Jin Y, Ren Q, Liu J, Zhang Y, Zheng H and Zhao P 2022 Exp. Mech. 62 761 [43] Que Y, Xiao W, Fei X, Chen H, Huang L, Du S X and Gao H J 2014 Appl. Phys. Lett. 104 093110 [44] Lu J, Neto A H and Loh K P 2012 Nat. Commun. 3 823 [45] Ding P, Yan J, Wang J, Han X, Yang W, Chen H, Zhang D, Huang M, Zhao J, Yang S, Xue T T, Liu L, Dai Y, Hou Y, Zhang S, Xu X, Wang Y and Huang Y 2024 Nano Lett. 24 8208 [4] Han J, Lai K, Yu X, Chen J, Guo H and Dai J 2023 Chin. Phys. Lett. 40 067801 [5] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|