Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 016803    DOI: 10.1088/1674-1056/ae1c23
RAPID COMMUNICATION Prev   Next  

Facile fabrication of twisted MoS2 bilayers by direct bonding

Yu-Tong Chen(陈雨彤)1,2,†, Jie-Ying Liu(刘杰英)2,†,‡, Lan-Ying Zhou(周兰英)2, Hua Yu(余画)2, Tong Li(李童)2, Qing Guan(关清)2,5, Na Li(李娜)2, Yang Chai(柴扬)1,§, and Guang-Yu Zhang(张广宇)2,3,4,¶
1 Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
5 The School of Integrated Circuits, Sun Yat-sen University, Shenzhen 518107, China
Abstract  When stacking two-dimensional (2D) materials with a lattice mismatch and/or a small twist, moiré superlattice emerges with fascinating electronic and optical properties. The fabrication of such stacked 2D materials usually requires multiple transfer and stack processes, assisted by a certain transfer medium which needs to be removed afterwards, and it is very challenging to maintain pristine and clean surfaces/interfaces for these stacked structures. In this work, we report a facile direct bonding method for fabrication of twisted MoS$_{2}$ bilayers with ultra-clean surfaces/interfaces. Novel interlayer interactions are revealed in the as-fabricated high-quality samples, leading to twist-angle related dispersion behavior of various Raman modes, such as layer breathing modes, shear modes and E$_{\rm 2g}$ modes, as well as indirect bandgap excitons. Field-effect transistors (FETs) of twisted MoS$_{2}$ bilayers also exhibit angle-dependent performance, which could be attributed to the band structure evolution. This facile method holds significance for the future integration of pre-designed multilayer 2D materials and paves a way to explore underlying physical mechanisms and potential applications.
Keywords:  two-dimensional (2D) materials      direct bonding      moiré      superlattice      twistronics  
Received:  09 September 2025      Revised:  28 October 2025      Accepted manuscript online:  06 November 2025
PACS:  68.65.Cd (Superlattices)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: This work is supported by Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2021B0301030002), the National Key Research and Development Program (Grant No. 2021YFA1202900), and the National Natural Science Foundation of China (Grant Nos. 62204166 and 62404145).
Corresponding Authors:  Jie-Ying Liu, Yang Chai, Guang-Yu Zhang     E-mail:  jyliu@iphy.ac.cn;ychai@polyu.edu.hk;gyzhang@iphy.ac.cn

Cite this article: 

Yu-Tong Chen(陈雨彤), Jie-Ying Liu(刘杰英), Lan-Ying Zhou(周兰英), Hua Yu(余画), Tong Li(李童), Qing Guan(关清), Na Li(李娜), Yang Chai(柴扬), and Guang-Yu Zhang(张广宇) Facile fabrication of twisted MoS2 bilayers by direct bonding 2026 Chin. Phys. B 35 016803

[1] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[2] Spanton E M, Zibrov A A, Zhou H, Taniguchi T, Watanabe K, Zaletel M P and Young A F 2018 Science 360 62
[3] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H and Li X 2019 Nature 567 71
[4] Liu E, Barré E, Van Baren J, Wilson M, Taniguchi T, Watanabe K, Cui Y T, Gabor N M, Heinz T F, Chang Y C and Lui C H 2021 Nature 594 46
[5] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66
[6] Ramos-Alonso A, Remez B, Bennett D, Fernandes R M and Ochoa H 2025 Phys. Rev. Lett. 134 026501
[7] Lin M L, Tan Q H, Wu J B, Chen X S, Wang J H, Pan Y H, Zhang X, Cong X, Zhang J, Ji W, Hu P A, Liu K H and Tan P H 2018 ACS Nano 12 8770
[8] Zheng S, Sun L, Zhou X, Liu F, Liu Z, Shen Z and Fan H J 2015 Adv. Opt. Mater. 3 1600
[9] Sun L, Wang Z, Wang Y, Zhao L, Li Y, Chen B, Huang S, Zhang S, Wang W, Pei D, Fang H, Zhong S, Liu H, Zhang J, Tong L, Chen Y, Li Z, Rümmeli M H, Novoselov K S, Peng H, Lin L and Liu Z 2021 Nat. Commun. 12 2391
[10] Xu M, Ji H, Zheng L, LiW,Wang J,Wang H, Luo L, Lu Q, Gan X, Liu Z, Wang X and Huang W 2024 Nat. Commun. 15 562
[11] Kang M A, Kim S J, SongW, Chang S, Park C Y, Myung S, Lim J, Lee S S and An K S 2017 Carbon 116 167
[12] Mannix A J, Ye A, Sung S H, Ray A, Mujid F, Park C, Lee M, Kang J H, Shreiner R, High A A, Muller D A, Hovden R and Park J 2022 Nat. Nanotechnol. 17 361
[13] Liao M,Wei Z, Du L,Wang Q, Tang J, Yu H,Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R and Zhang G 2020 Nat. Commun. 11 2153
[14] Kim J H, Ko T J, Okogbue E, Han S S, Shawkat M S, Kaium M G, Oh K H, Chung H S and Jung Y 2019 Sci. Rep. 9 1641
[15] Yun S J, Chae S H, Kim H, Park J C, Park J H, Han G H, Lee J S, Kim S M, Oh H M, Seok J, Jeong M S, Kim K K and Lee Y H 2015 ACS Nano 9 5510
[16] Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Bøggild P and Booth T J 2016 Nat. Commun. 7 11894
[17] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T,Watanabe K, Banerjee S K, Leroy B J and Tutuc E 2016 Nano Lett. 16 1989
[18] Liu J, Zhao J, Li T, Ji D, Dai L, Li L,Wei Z, Li J,Wang Q, Yu H, Zhou L, Chen Y, Wu F, Zhu M, Sun H, Li Y, Zhang S, Tian J, Zhang X, Lu N, Bai X, Cao Z, Lin S, Wang S, Shi D, Li N, Du L, Yang W, Xian L and Zhang G 2025 Nat. Electron. 8 1038
[19] Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y,Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D and Zhang G 2020 Nano Lett. 20 7193
[20] Li L, Wang Q, Wu F, Xu Q, Tian J, Huang Z, Wang Q, Zhao X, Zhang Q, Fan Q, Li X, Peng Y, Zhang Y, Ji K, Zhi A, Sun H, Zhu M, Zhu J, Lu N, Lu Y, Wang S, Bai X, Xu Y, Yang W, Li N, Shi D, Xian L, Liu K, Du L and Zhang G 2024 Nat. Commun. 15 1825
[21] Zhang Y, Lee Y, Zhang W, Song D, Lee K, Zhao Y, Hao H, Zhao Z, Wang S, Kim K and Liu N 2023 Adv. Funct. Mater. 33 2212210
[22] Wu K, Wang H, Yang M, Liu L, Sun Z, Hu G, Song Y, Han X, Guo J, Wu K, Feng B, Shen C, Huang Y, Shi Y, Cheng Z, Yang H, Bao L, Pantelides S T and Gao H J 2024 Adv. Mater. 36 2313511
[23] McGilly L J, Kerelsky A, Finney N R, Shapovalov K, Shih E M, Ghiotto A, Zeng Y, Moore S L, Wu W, Bai Y, Watanabe K, Taniguchi T, Stengel M, Zhou L, Hone J, Zhu X, Basov D N, Dean C, Dreyer C E and Pasupathy A N 2020 Nat. Nanotechnol. 15 580
[24] Weston A, Zou Y, Enaldiev V, Summerfield A, Clark N, Zólyomi V, Graham A, Yelgel C, Magorrian S, Zhou M, Zultak J, Hopkinson D, Barinov A, Bointon T H, Kretinin A,Wilson N R, Beton P H, Fal’ko V I, Haigh S J and Gorbachev R 2020 Nat. Nanotechnol. 15 592
[25] Lin K, Holler J, Bauer J M, Parzefall P, Scheuck M, Peng B, Korn T, Bange S, Lupton J M and Schüller C 2021 Adv. Mater. 33 2008333
[26] Du L, MolasMR, Huang Z, Zhang G,Wang F and Sun Z 2023 Science 379 6639
[27] Lim S Y, Kim H, Choi Y W, Taniguchi T, Watanabe K, Choi H J and Cheong H 2023 ACS Nano 17 13938
[28] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and Leroy B J 2012 Nat. Phys. 8 382
[29] Lin M L, Tan Q H,Wu J Bin, Chen X S,Wang J H, Pan Y H, Zhang X, Cong X, Zhang J, Ji W, Hu P A, Liu K H and Tan P H 2018 ACS Nano 12 8770
[30] Wu Y, Wang S, Chen C, Zhou C, Chen K, Zhou J, Wang Z, Bie Y and Deng S 2024 Adv. Opt. Mater. 12 2301747
[31] Quan J, Linhart L, Lin M L, Lee D, Zhu J, Wang C Y, Hsu W T, Choi J, Embley J, Young C, Taniguchi T, Watanabe K, Shih C K, Lai K, MacDonald A H, Tan P H, Libisch F and Li X 2021 Nat. Mater. 20 1100
[32] Weston A, Zou Y, Enaldiev V, Summerfield A, Clark N, Zólyomi V, Graham A, Yelgel C, Magorrian S, Zhou M, Zultak J, Hopkinson D, Barinov A, Bointon T H, Kretinin A,Wilson N R, Beton P H, Fal’ko V I, Haigh S J and Gorbachev R 2020 Nat. Nanotechnol. 15 592
[33] Lee J U, Woo S, Park J, Park H C, Son Y W and Cheong H 2017 Nat. Commun. 8 1370
[34] Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G and Wang F 2014 Nat. Commun. 5 4966
[35] Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, YangW, Du L and Zhang G 2023 Phys. Rev. Lett. 131 256201
[36] Xian L, Claassen M, Kiese D, SchererMM, Trebst S, Kennes DMand Rubio A 2021 Nat. Commun. 12 5644
[37] Naik M H and Jain M 2018 Phys. Rev. Lett. 121 266401
[1] Three-dimensional flat bands and possible interlayer triplet pairing superconductivity in the alternating twisted NbSe2 moiré bulk
Shuang Liu(刘爽), Peng Chen(陈鹏), and Shihao Zhang(张世豪). Chin. Phys. B, 2026, 35(2): 026801.
[2] Charge-transfer-induced re-entrant ferromagnetism in twisted-bilayer-MoTe2/hBN/WSe2
Shaozheng Wang(王绍政), Xumin Chang(常旭敏), Feng Liu(刘峰), Yuchen Zheng(郑宇辰), Juncai Wu(吴俊才), Tong Zheng(郑桐), Kenji Watanabe, Takashi Taniguchi, and Shengwei Jiang(姜生伟). Chin. Phys. B, 2026, 35(2): 027101.
[3] Interaction enhanced inter-site hoppings for holons and interlayer exciton insulators in moiré correlated insulators
Zijian Ma(马子健) and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(9): 097303.
[4] Enhancing room-temperature thermoelectricity of SrTiO3 based superlattices via epitaxial strain
Yi Zhu(朱怡), Hao Liu(刘昊), Huilin Lai(赖辉琳), Zhenghua An(安正华), Yinyan Zhu(朱银燕), Lifeng Yin(殷立峰), and Jian Shen(沈健). Chin. Phys. B, 2025, 34(9): 097305.
[5] Semiregular tessellation of electronic lattices in untwisted bilayer graphene under anisotropic strain gradients
Zeyu Liu(刘泽宇), Xianghua Kong(孔祥华), Zhidan Li(李志聃), Zewen Wu(吴泽文), Linwei Zhou(周霖蔚), Cong Wang(王聪), and Wei Ji(季威). Chin. Phys. B, 2025, 34(9): 097309.
[6] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[7] Fabrication of two-dimensional van der Waals moiré superlattices
Zihao Wan(万子豪), Chao Wang(王超), Hang Zheng(郑航), Wenna Tang(唐文娜), Zihao Fu(付梓豪), Weilin Liu(刘伟林), Zhenjia Zhou(周振佳), Jun Li(李骏), Guowen Yuan(袁国文), and Libo Gao(高力波). Chin. Phys. B, 2025, 34(4): 047302.
[8] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[9] Orbital XY models in moiré superlattices
Yanqi Li(李彦琪), Yi-Jie Wang(王一杰), and Zhi-Da Song(宋志达). Chin. Phys. B, 2025, 34(2): 027303.
[10] Moiré physics in two-dimensional materials: Novel quantum phases and electronic properties
Zi-Yi Tian(田子弈), Si-Yu Li(李思宇), Hai-Tao Zhou(周海涛), Yu-Hang Jiang(姜宇航), and Jin-Hai Mao(毛金海). Chin. Phys. B, 2025, 34(2): 027301.
[11] Chiral phonons of honeycomb-type bilayer Wigner crystals
Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(1): 017301.
[12] Manipulating optical and electronic properties through interfacial ferroelectricity
Yulu Liu(刘钰璐), Gan Liu(刘敢), and Xiaoxiang Xi(奚啸翔). Chin. Phys. B, 2025, 34(1): 017701.
[13] Valley-selective manipulation of moiré excitons through optical Stark effect
Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩). Chin. Phys. B, 2025, 34(1): 017102.
[14] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[15] Moiré superlattices arising from growth induced by screw dislocations in layered materials
Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Chin. Phys. B, 2024, 33(7): 077403.
No Suggested Reading articles found!