|
|
|
Facile fabrication of twisted MoS2 bilayers by direct bonding |
| Yu-Tong Chen(陈雨彤)1,2,†, Jie-Ying Liu(刘杰英)2,†,‡, Lan-Ying Zhou(周兰英)2, Hua Yu(余画)2, Tong Li(李童)2, Qing Guan(关清)2,5, Na Li(李娜)2, Yang Chai(柴扬)1,§, and Guang-Yu Zhang(张广宇)2,3,4,¶ |
1 Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China; 2 Songshan Lake Materials Laboratory, Dongguan 523808, China; 3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 5 The School of Integrated Circuits, Sun Yat-sen University, Shenzhen 518107, China |
|
|
|
|
Abstract When stacking two-dimensional (2D) materials with a lattice mismatch and/or a small twist, moiré superlattice emerges with fascinating electronic and optical properties. The fabrication of such stacked 2D materials usually requires multiple transfer and stack processes, assisted by a certain transfer medium which needs to be removed afterwards, and it is very challenging to maintain pristine and clean surfaces/interfaces for these stacked structures. In this work, we report a facile direct bonding method for fabrication of twisted MoS2 bilayers with ultra-clean surfaces/interfaces. Novel interlayer interactions are revealed in the as-fabricated high-quality samples, leading to twist-angle related dispersion behavior of various Raman modes, such as layer breathing modes, shear modes and E2g modes, as well as indirect bandgap excitons. Field-effect transistors (FETs) of twisted MoS2 bilayers also exhibit angle-dependent performance, which could be attributed to the band structure evolution. This facile method holds significance for the future integration of pre-designed multilayer 2D materials and paves a way to explore underlying physical mechanisms and potential applications.
|
Received: 09 September 2025
Revised: 28 October 2025
Accepted manuscript online: 06 November 2025
|
|
PACS:
|
68.65.Cd
|
(Superlattices)
|
| |
81.07.b
|
|
| |
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
| Fund: This work is supported by Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2021B0301030002), the National Key Research and Development Program (Grant No. 2021YFA1202900), and the National Natural Science Foundation of China (Grant Nos. 62204166 and 62404145). |
Corresponding Authors:
Jie-Ying Liu, Yang Chai, Guang-Yu Zhang
E-mail: jyliu@iphy.ac.cn;ychai@polyu.edu.hk;gyzhang@iphy.ac.cn
|
Cite this article:
Yu-Tong Chen(陈雨彤), Jie-Ying Liu(刘杰英), Lan-Ying Zhou(周兰英), Hua Yu(余画), Tong Li(李童), Qing Guan(关清), Na Li(李娜), Yang Chai(柴扬), and Guang-Yu Zhang(张广宇) Facile fabrication of twisted MoS2 bilayers by direct bonding 2026 Chin. Phys. B 35 016803
|
[1] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [2] Spanton E M, Zibrov A A, Zhou H, Taniguchi T, Watanabe K, Zaletel M P and Young A F 2018 Science 360 62 [3] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H and Li X 2019 Nature 567 71 [4] Liu E, Barre E, Van Baren J, Wilson M, Taniguchi T, Watanabe K, Cui Y T, Gabor N M, Heinz T F, Chang Y C and Lui C H 2021 Nature 594 46 [5] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66 [6] Ramos-Alonso A, Remez B, Bennett D, Fernandes R M and Ochoa H 2025 Phys. Rev. Lett. 134 026501 [7] Lin M L, Tan Q H, Wu J B, Chen X S, Wang J H, Pan Y H, Zhang X, Cong X, Zhang J, Ji W, Hu P A, Liu K H and Tan P H 2018 ACS Nano 12 8770 [8] Zheng S, Sun L, Zhou X, Liu F, Liu Z, Shen Z and Fan H J 2015 Adv. Opt. Mater. 3 1600 [9] Sun L, Wang Z, Wang Y, Zhao L, Li Y, Chen B, Huang S, Zhang S, Wang W, Pei D, Fang H, Zhong S, Liu H, Zhang J, Tong L, Chen Y, Li Z, Rummeli M H, Novoselov K S, Peng H, Lin L and Liu Z 2021 Nat. Commun. 12 2391 [10] Xu M, Ji H, Zheng L, Li W, Wang J, Wang H, Luo L, Lu Q, Gan X, Liu Z, Wang X and Huang W 2024 Nat. Commun. 15 562 [11] Kang M A, Kim S J, Song W, Chang S, Park C Y, Myung S, Lim J, Lee S S and An K S 2017 Carbon 116 167 [12] Mannix A J, Ye A, Sung S H, Ray A, Mujid F, Park C, Lee M, Kang J H, Shreiner R, High A A, Muller D A, Hovden R and Park J 2022 Nat. Nanotechnol. 17 361 [13] Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R and Zhang G 2020 Nat. Commun. 11 2153 [14] Kim J H, Ko T J, Okogbue E, Han S S, Shawkat M S, Kaium M G, Oh K H, Chung H S and Jung Y 2019 Sci. Rep. 9 1641 [15] Yun S J, Chae S H, Kim H, Park J C, Park J H, Han G H, Lee J S, Kim S M, Oh H M, Seok J, Jeong M S, Kim K K and Lee Y H 2015 ACS Nano 9 5510 [16] Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Bøggild P and Booth T J 2016 Nat. Commun. 7 11894 [17] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, Leroy B J and Tutuc E 2016 Nano Lett. 16 1989 [18] Liu J, Zhao J, Li T, Ji D, Dai L, Li L, Wei Z, Li J, Wang Q, Yu H, Zhou L, Chen Y, Wu F, Zhu M, Sun H, Li Y, Zhang S, Tian J, Zhang X, Lu N, Bai X, Cao Z, Lin S, Wang S, Shi D, Li N, Du L, Yang W, Xian L and Zhang G 2025 Nat. Electron. 8 1038 [19] Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D and Zhang G 2020 Nano Lett. 20 7193 [20] Li L, Wang Q, Wu F, Xu Q, Tian J, Huang Z, Wang Q, Zhao X, Zhang Q, Fan Q, Li X, Peng Y, Zhang Y, Ji K, Zhi A, Sun H, Zhu M, Zhu J, Lu N, Lu Y, Wang S, Bai X, Xu Y, Yang W, Li N, Shi D, Xian L, Liu K, Du L and Zhang G 2024 Nat. Commun. 15 1825 [21] Zhang Y, Lee Y, Zhang W, Song D, Lee K, Zhao Y, Hao H, Zhao Z, Wang S, Kim K and Liu N 2023 Adv. Funct. Mater. 33 2212210 [22] Wu K, Wang H, Yang M, Liu L, Sun Z, Hu G, Song Y, Han X, Guo J, Wu K, Feng B, Shen C, Huang Y, Shi Y, Cheng Z, Yang H, Bao L, Pantelides S T and Gao H J 2024 Adv. Mater. 36 2313511 [23] McGilly L J, Kerelsky A, Finney N R, Shapovalov K, Shih E M, Ghiotto A, Zeng Y, Moore S L, Wu W, Bai Y, Watanabe K, Taniguchi T, Stengel M, Zhou L, Hone J, Zhu X, Basov D N, Dean C, Dreyer C E and Pasupathy A N 2020 Nat. Nanotechnol. 15 580 [24] Weston A, Zou Y, Enaldiev V, Summerfield A, Clark N, Zolyomi V, Graham A, Yelgel C, Magorrian S, Zhou M, Zultak J, Hopkinson D, Barinov A, Bointon T H, Kretinin A, Wilson N R, Beton P H, Fal’ko V I, Haigh S J and Gorbachev R 2020 Nat. Nanotechnol. 15 592 [25] Lin K, Holler J, Bauer J M, Parzefall P, Scheuck M, Peng B, Korn T, Bange S, Lupton J M and Schuller C 2021 Adv. Mater. 33 2008333 [26] Du L, Molas M R, Huang Z, Zhang G, Wang F and Sun Z 2023 Science 379 6639 [27] Lim S Y, Kim H, Choi Y W, Taniguchi T, Watanabe K, Choi H J and Cheong H 2023 ACS Nano 17 13938 [28] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and Leroy B J 2012 Nat. Phys. 8 382 [29] Lin M L, Tan Q H, Wu J Bin, Chen X S, Wang J H, Pan Y H, Zhang X, Cong X, Zhang J, Ji W, Hu P A, Liu K H and Tan P H 2018 ACS Nano 12 8770 [30] Wu Y, Wang S, Chen C, Zhou C, Chen K, Zhou J, Wang Z, Bie Y and Deng S 2024 Adv. Opt. Mater. 12 2301747 [31] Quan J, Linhart L, Lin M L, Lee D, Zhu J, Wang C Y, Hsu W T, Choi J, Embley J, Young C, Taniguchi T, Watanabe K, Shih C K, Lai K, MacDonald A H, Tan P H, Libisch F and Li X 2021 Nat. Mater. 20 1100 [32] Weston A, Zou Y, Enaldiev V, Summerfield A, Clark N, Zolyomi V, Graham A, Yelgel C, Magorrian S, Zhou M, Zultak J, Hopkinson D, Barinov A, Bointon T H, Kretinin A, Wilson N R, Beton P H, Fal’ko V I, Haigh S J and Gorbachev R 2020 Nat. Nanotechnol. 15 592 [33] Lee J U, Woo S, Park J, Park H C, Son Y W and Cheong H 2017 Nat. Commun. 8 1370 [34] Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G and Wang F 2014 Nat. Commun. 5 4966 [35] Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L and Zhang G 2023 Phys. Rev. Lett. 131 256201 [36] Xian L, Claassen M, Kiese D, Scherer M M, Trebst S, Kennes D M and Rubio A 2021 Nat. Commun. 12 5644 [37] Naik M H and Jain M 2018 Phys. Rev. Lett. 121 266401 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|