Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 096801    DOI: 10.1088/1674-1056/adee02
RAPID COMMUNICATION Prev   Next  

Bond-resolved silicene on Au(111) substrate

Ye Chen(陈烨)1, Wenya Zhai(翟文雅)1, Haoyuan Zang(臧浩原)1, Zengfu Ou(欧增福)2, Donghui Guo(郭东辉)1,†, and Jingcheng Li(李竟成)1,‡
1 Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China;
2 College of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541004, China
Abstract  Silicene, a silicon analog of graphene, holds promise for next-generation electronics due to its tunable bandgap and larger spin-orbit coupling. Despite extensive efforts to synthesize and characterize silicene on metal substrates, bond-resolved imaging of its atomic structure has remained elusive. Here, we report the fabrication and bond-resolved characterization of silicene on Au(111) substrate. Three silicene phases tuned by surface reconstruction and annealing temperatures are achieved. Using CO-terminated scanning tunneling microscopy (STM) tips, we resolve these silicene phases with atomic precision, determining their bond lengths, local strain, and geometric configurations. Furthermore, we correlate these structural features with their electronic properties, revealing the effect of strain and substrate interactions on the electronic properties of silicene. This work establishes silicene's intrinsic bonding topology and resolves longstanding controversies in silicene research.
Keywords:  scanning tunneling microscope      synthesis of silicene on Au(111)      bond resolved imaging      bond length      local strain  
Received:  02 May 2025      Revised:  28 June 2025      Accepted manuscript online:  10 July 2025
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  82.75.Fq (Synthesis, structure determination, structure modeling)  
  61.46.-w (Structure of nanoscale materials)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12474181), the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2021B0301030002 and 2024A1515010656), and the Guangdong Science and Technology Project (Grant No. 2021QN02X859). The experiments reported were conducted at the Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008).
Corresponding Authors:  Donghui Guo, Jingcheng Li     E-mail:  guodonghui@mail.sysu.edu.cn;lijch73@mail.sysu.edu.cn

Cite this article: 

Ye Chen(陈烨), Wenya Zhai(翟文雅), Haoyuan Zang(臧浩原), Zengfu Ou(欧增福), Donghui Guo(郭东辉), and Jingcheng Li(李竟成) Bond-resolved silicene on Au(111) substrate 2025 Chin. Phys. B 34 096801

[1] Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[2] Jose D and Datta A 2014 Chem. Res. 47 593
[3] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[4] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[5] Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z and Lu J 2012 Sci. Rep. 2 853
[6] Du Y, Zhuang J, Liu H, Xu X, Eilers S, Wu K, Cheng P, Zhao J, Pi X, See K W, Peleckis G, Wang X and Dou S X 2014 ACS Nano 8 10019
[7] Qiu J, Fu H, Xu Y, Oreshkin A I, Shao T, Li H, Meng S, Chen L and Wu K 2015 Phys. Rev. Lett. 114 126101
[8] Zhao J, Liu H, Yu Z, Quhe R, Zhou S,Wang Y, Liu C C, Zhong H, Han N, Lu J, Yao Y and Wu K 2016 Prog. Mater. Sci. 83 24
[9] Shan G, Tan H, Ma R, Zhao H and Huang W 2023 Nanoscale 15 2982
[10] Liu M, Cheng Z, Zhang X, Li Y, Jin L, Liu C, Dai X, Liu Y, Wang X and Liu G 2023 Chin. Phys. B 32 096303
[11] Xie H, Lü X L and Yang J E 2023 Chin. Phys. B 33 018502
[12] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
[13] Man Q, An Y, Shen H, Wei C, Xiong S and Feng J 2023 Mater. Today 67 566
[14] Masson L and Prévot G 2023 Nanoscale Adv. 5 1574
[15] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[16] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[17] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[18] Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B and Bibérian J P 2012 J. Phys.: Condens. Matter 24 172001
[19] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[20] Enriquez H, Vizzini S, Kara A, Lalmi B and Oughaddou H 2012 J. Phys.: Condens. Matter 24 314211
[21] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada- Takamura Y 2012 Phys. Rev. Lett. 108 245501
[22] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[23] Aizawa T, Suehara S and Otani S 2014 J. Phys. Chem. C 118 23049
[24] De Crescenzi M, Berbezier I, Scarselli M, Castrucci P, Abbarchi M, Ronda A, Jardali F, Park J and Vach H 2016 ACS Nano 10 11163
[25] Huang L, Zhang Y F, Zhang Y Y, XuW, Que Y, Li E, Pan J B,Wang Y L, Liu Y, Du S X, Pantelides S T and Gao H J 2017 Nano Lett. 17 1161
[26] Sadeddine S, Enriquez H, Bendounan A, Kumar Das P, Vobornik I, Kara A, Mayne A J, Sirotti F, Dujardin G and Oughaddou H 2017 Sci. Rep. 7 44400
[27] Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y, Du S, Ouyang M, Pantelides S T and Gao H 2018 Adv. Mater. 30 1804650
[28] Stepniak-Dybala A, Dyniec P, Kopciuszyski M, Zdyb R, Jałochowski M and Krawiec M 2019 Adv. Funct. Mater. 29 1906053
[29] Stępniak-Dybala A and Krawiec M 2019 J. Phys. Chem. C 123 17019
[30] Nicholls D, Fatima, Ç akır D and Oncel N 2019 J. Phys. Chem. C 123 7225
[31] Wiggers F B, Fleurence A, Aoyagi K, Yonezawa T, Yamada-Takamura Y, Feng H, Zhuang J, Du Y, Kovalgin A Y and De Jong M P 2019 2D Mater. 6 035001
[32] Sato Y, Fukaya Y, Cameau M, Kundu A K, Shiga D, Yukawa R, Horiba K, Chen C H, Huang A, Jeng H T, Ozaki T, Kumigashira H, Niibe M and Matsuda I 2020 Phys. Rev. Mater. 4 064005
[33] Leoni T, Hogan C, Zhang K, Daher Mansour M, Bernard R, Parret R, Resta A, Colonna S, Borensztein Y, Ronci F, Prévot G and Masson L 2021 J. Phys. Chem. C 125 17906
[34] Kopciuszyński M, Stępniak-Dybala A, Zdyb R and Krawiec M 2024 Nano Lett. 24 2175
[35] Stępniak-Dybala A and Krawiec M 2025 Surf. Interfaces 59 105937
[36] Deniz O, Sánchez-Sánchez C, Dumslaff T, Feng X, Narita A, Müllen K, Kharche N, Meunier V, Fasel R and Ruffieux P 2017 Nano Lett. 17 2197
[37] Pawlak R, Drechsel C, D’Astolfo P, Kisiel M, Meyer E and Cerda J I 2020 Proc. Natl. Acad. Sci. USA 117 228
[38] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez- Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[39] Chiappe D, Grazianetti C, Tallarida G, Fanciulli M and Molle A 2012 Adv. Mater. 24 5088
[40] Arafune R, Lin C L, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2013 Surf. Sci. 608 297
[41] Liu Z L, Wang M X, Xu J P, Ge J F, Lay G L, Vogt P, Qian D, Gao C L, Liu C and Jia J F 2014 New J. Phys. 16 075006
[42] Jamgotchian H, Ealet B, Colignon Y, Maradj H, Hoarau J Y, Biberian J P and Aufray B 2015 J. Phys.: Condens. Matter 27 395002
[43] Nazzari D, Genser J, Ritter V, Bethge O, Bertagnolli E, Ramer G, Lendl B,Watanabe K, Taniguchi T, Rurali R, Kolíbal M and Lugstein A 2021 J. Phys. Chem. C 125 9973
[44] Zhao H 2012 Phys. Lett. A 376 3546
[1] Manipulation of vortex array via a magnetism-tunable spin-polarized scanning tunnelling microscopy
Bing Xia(夏冰), Hong-Yuan Chen(陈虹源), Jian Zheng(郑健), Bo Yang(杨波), Jie Cai(蔡杰), Yi Zhang(章毅), Yi Yang(杨毅), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2025, 34(3): 037402.
[2] Emergent 3×3 charge order on the Cs reconstruction of kagome superconductor CsV3Sb5
Xianghe Han(韩相和), Zhongyi Cao(曹钟一), Zihao Huang(黄子豪), Zhen Zhao(赵振), Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(1): 016801.
[3] Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋). Chin. Phys. B, 2023, 32(5): 056803.
[4] Unveiling localized electronic properties of ReS2 thin layers at nanoscale using Kelvin force probe microscopy combined with tip-enhanced Raman spectroscopy
Yu Luo(罗宇), Weitao Su(苏伟涛), Juanjuan Zhang(张娟娟), Fei Chen(陈飞), Ke Wu(武可), Yijie Zeng(曾宜杰), and Hongwei Lu(卢红伟). Chin. Phys. B, 2023, 32(11): 117801.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[7] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[8] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[9] Direct observation of the scaling relation between density of states and pairing gap in a dirty superconductor
Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Peng-Bo Song(宋鹏博), Han-Bin Deng(邓翰宾), Chang-Jiang Yi(伊长江), Ying-Kai Sun(孙英开), R Wu(武睿), Jia-Xin Yin(殷嘉鑫), Youguo Shi(石友国), Ziqiang Wang(汪自强), and Shuheng H. Pan(潘庶亨). Chin. Phys. B, 2021, 30(10): 106802.
[10] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[11] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[12] Epitaxial synthesis and electronic properties of monolayer Pd2Se3
Peng Fan(范朋), Rui-Zi Zhang(张瑞梓), Jing Qi(戚竞), En Li(李恩), Guo-Jian Qian(钱国健), Hui Chen(陈辉), Dong-Fei Wang(王东飞), Qi Zheng(郑琦), Qin Wang(汪琴), Xiao Lin(林晓), Yu-Yang Zhang(张余洋), Shixuan Du(杜世萱), Hofer W A, Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(9): 098102.
[13] Machine learning identification of impurities in the STM images
Ce Wang(王策), Haiwei Li(李海威), Zhenqi Hao(郝镇齐), Xintong Li(李昕彤), Changwei Zou(邹昌炜), Peng Cai(蔡鹏), Yayu Wang(王亚愚), Yi-Zhuang You(尤亦庄), and Hui Zhai(翟荟). Chin. Phys. B, 2020, 29(11): 116805.
[14] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
[15] Theoretical study on non-sequential double ionization of carbon disulfide with different bond lengths in linearly polarized laser fields
Kai-Li Song(宋凯莉), Wei-Wei Yu(于伟威), Shuai Ben(贲帅), Tong-Tong Xu(徐彤彤), Hong-Dan Zhang(张宏丹), Pei-Ying Guo(郭培莹), Jing Guo(郭静). Chin. Phys. B, 2017, 26(2): 023204.
No Suggested Reading articles found!