Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 018502    DOI: 10.1088/1674-1056/ae1c26
RAPID COMMUNICATION Prev   Next  

Strong enhancement of spin-orbit torques and perpendicular magnetic anisotropy in [Pt0.75Ti0.25/Co–Ni multilayer/Ta]n superlattices

Xiaomiao Yin(阴小苗)1,2,3, Zhengxiao Li(李政霄)2,4, Jun Kang(康俊)1,3,†, Changmin Xiong(熊昌民)3,5,‡, and Lijun Zhu(朱礼军)2,4,§
1 Beijing Computational Science Research Center, Beijing 100193, China;
2 State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
3 Department of Physics, Beijing Normal University, Beijing 100875, China;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
5 Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
Abstract  We report the development of the [Pt$_{0.75}$Ti$_{0.25}$/Co-Ni multilayer/Ta]$_{n}$ superlattice with strong spin-orbit torque, large perpendicular magnetic anisotropy, and remarkably low switching current density. We demonstrate that the efficiency of the spin-orbit torque increases nearly linearly with the repetition number $n$, which is in excellent agreement with the spin Hall effect of the Pt$_{0.75}$Ti$_{0.25}$ being essentially the only source of the observed spin-orbit torque. The perpendicular magnetic anisotropy field is also substantially enhanced by more than a factor of 2 as $n$ increases from 1 to 6. The [Pt$_{0.75}$Ti$_{0.25}$/Co-Ni multilayers/Ta]$_{n}$ superlattice additionally exhibits deterministic, low-current-density magnetization switching despite the very large total layer thicknesses. The unique combination of strong spin-orbit torque, robust perpendicular magnetic anisotropy, low-current-density switching, and excellent high thermal stability makes the [Pt$_{0.75}$Ti$_{0.25}$/Co-Ni multilayer/Ta]$_{n}$ superlattice a highly compelling material candidate for ultrafast, energy-efficient, and long-data-retention spintronic technologies.
Keywords:  spin-orbit torque      perpendicular magnetic anisotropy      spin Hall effect      magnetization switching  
Received:  17 September 2025      Revised:  21 October 2025      Accepted manuscript online:  06 November 2025
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  72.25.Mk (Spin transport through interfaces)  
  68.65.Cd (Superlattices)  
  96.12.Hg (Magnetic field and magnetism)  
Fund: This project was supported by the Beijing Natural Science Foundation (Grant No. Z230006), the National Key Research and Development Program of China (Grant No. 2022YFA1204000), and the National Natural Science Foundation of China (Grant Nos. 12274405 and 12393831).
Corresponding Authors:  Jun Kang, Changmin Xiong, Lijun Zhu     E-mail:  jkang@csrc.ac.cn;cmxiong@bnu.edu.cn;ljzhu@semi.ac.cn

Cite this article: 

Xiaomiao Yin(阴小苗), Zhengxiao Li(李政霄), Jun Kang(康俊), Changmin Xiong(熊昌民), and Lijun Zhu(朱礼军) Strong enhancement of spin-orbit torques and perpendicular magnetic anisotropy in [Pt0.75Ti0.25/Co–Ni multilayer/Ta]n superlattices 2026 Chin. Phys. B 35 018502

[1] Zhu L J 2023 Adv. Mater. 35 2300853
[2] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[3] Miron I M, Garello K, Gaudin G, Zermatten P J, CostacheMV, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature (London) 476 189
[4] Luo Z C, Hrabec A, Dao T P, Sala G, Finizio S, Feng J X, Mayr S, Raabe J, Gambardella P and Heyderman L J 2020 Nature 579 214
[5] Zhang Y, Xu H J, Jia K, et al. 2023 Sci. Adv. 9 adg9819
[6] Hu S, Shao D F, Yang H L, Pan C, Fu Z X, Tang M, Yang Y M, Fan W J, Zhou S M, Tsymbal E Y and Qiu X P 2022 Nat. Commun. 13 4447
[7] Liu L, Zhou C H, Zhao T Y, et al. 2022 Nat. Commun. 13 3539
[8] Liang S X, Chen A T, Han L, Bai H, Chen C, Huang L, Ma M Y, Pan F, Zhang X X and Song C 2024 Adv. Funct. Mater. 35 2417731
[9] Fan Y B, Wang Q, Wang W, Wang D, Huang Q K, Wang Z X, Han X, Chen Y X, Bai L H, Yan S S and Tian Y F 2024 ACS Nano 18 26350
[10] Li R F, Zhang S, Luo S J, Guo Z, Xu Y, Ouyang J, Song M, Zou Q M, Xi L, Yang X F, Hong J M and You L 2021 Nat. Electron. 4 179
[11] Lee O J, Liu L Q, Pai C F, Li Y, Tseng H W, Gowtham P G, Park J P, Ralph D C and Buhrman R A 2014 Phys. Rev. B 89 024418
[12] Zhu L J, Ralph D C and Buhrman R A 2021 Phys. Rev. Appl. 15 024059
[13] Zhu L J, Ralph D C and Buhrman R A 2021 Appl. Phys. Rev. 8 031308
[14] Zhu L J, Ralph D C and Buhrman R A 2018 Phys. Rev. Appl. 10 031001
[15] Zhu L J, Zhu L, Sui M L, Ralph D C and Buhrman R A 2019 Sci. Adv. 5 eaav8025
[16] Zhu L J, Sobotkiewich K, Ma X, Li X Q, Ralph D C and Buhrman R A 2019 Adv. Funct. Mater. 29 1805822
[17] Hu C Y and Pai C F 2020 Adv. Quantum Technol. 3 2000024
[18] Liu Q B, Li J W, Zhu L J, Lin X, Xie X Y and Zhu L J 2022 Phys. Rev. Appl. 18 054079
[19] Quan J Z, Zhao X T, LiuW, Liu L, Song Y H, Li Y, Ma J, Li S Q, Zhao X G and Zhang Z D 2020 Appl. Phys. Lett. 117 222405
[20] Zhu L J, Zhu L J, Shi S J, Sui M L, Ralph D C and Buhrman R A 2019 Phys. Rev. Appl. 11 061004
[21] Zhu L J and Buhrman R A 2019 Phys. Rev. Appl. 12 051002
[22] Zhu L J, Li JW, Zhu L J and Xie X Y 2022 Phys. Rev. Appl. 18 064052
[23] Lin X, Zhu L J, Liu Q B and Zhu L J 2023 Nano Lett. 23 9420
[24] Zhu L J and Ralph D C 2023 Nat. Commun. 14 1778
[25] Seki T, Shimada J, Iihama S, Tsujikawa M, Koganezawa T, Shioda A, Tashiro T, Zhou W, Mizukami S, Shirai M and Takanashi K 2017 J. Phys. Soc. Jpn. 86 074710
[26] Fukami S, Sato H, Yamanouchi M, Ikeda S and Ohno H 2013 Appl. Phys. Express 6 073010
[27] Daalderop G H O, Kelly P J and den Broeder F J A 1992 Phys. Rev. Lett. 68 682
[28] You L, Sousa R C, Bandiera S, Rodmacq B and Dieny B 2012 Appl. Phys. Lett. 100 172411
[29] Mohanta M, Parida S K, Sahoo A, Hussain Z, Gupta M, Reddy V R and Medicherla V R R 2019 Phys. B Condens. Matter 572 105
[30] Girod S, Gottwald M, Andrieu S, Mangin S, McCord J, Fullerton E E, Beaujour J M L, Krishnatreya B J and Kent A D 2009 Appl. Phys. Lett. 94 262504
[31] Beaujour J M L, Chen W, Krycka K, Kao C C, Sun J Z and Kent A D 2007 Eur. Phys. J. B 59 475
[32] Mangin S, Ravelosona D, Katine J A, CareyMJ, Terris B D and Fullerton E E 2006 Nat. Mater. 5 210
[33] Bedau D, Liu H, Bouzaglou J J, Kent A D, Sun J Z, Katine J A, Fullerton E E and Mangin S 2010 Appl. Phys. Lett. 96 022514
[34] Koyama T, Yamada G, Tanigawa H, Kasai S, Ohshima N, Fukami S, Ishiwata N, Nakatani Y and Ono T 2008 Appl. Phys. Exp. 1 101303
[35] Koyama T, Chiba D, Ueda K, Kondou K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Kobayashi K and Ono T 2011 Nat. Mater. 10 194
[36] Moriyama T, Gudmundsen T J, Huang P Y, Liu L, Muller D A, Ralph D C and Buhrman R A 2010 Appl. Phys. Lett. 97 072513
[37] Bansal R, Behera N, Kumar A and Mudulia P K 2017 Appl. Phys. Lett. 110 202402
[38] Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425
[39] Liu Q B, Zhu L J, Zhang X S, Muller D A and Ralph D C 2022 Appl. Phys. Rev. 9 021402
[40] Yan Z H, Li Z X, Zhu L J, Lin X and Zhu L J 2025 Chin. Phys. Lett. 42 090701
[41] Seki T, Sakuraba Y, Masuda K, Miura A, Tsujikawa M, Uchida K, Kubota T, Miura Y, Shirai M and Takanashi K 2021 Phys. Rev. B 103 L020402
[42] Uchida K I, Kikkawa T, Seki T, Oyake T, Shiomi J, Qiu Z, Takanashi K and Saitoh E 2015 Phys. Rev. B 92 094414
[43] Nguyen M H, Ralph D C and Buhrman R A 2016 Phys. Rev. Lett. 116 126601
[44] Liu Q B, Lin X, Shaked A, Nie Z Y, Yu G Q and Zhu L J 2024 Adv. Mater. 36 2406552
[45] Chen T Y, Ou Y X, Tsai T Y, Buhrman R A and Pai C F 2018 APL Mater. 6 121101
[46] Liu Q B and Zhu L J 2025 Nat. Commun. 16 8660
[47] Zhu L J, Liu Q B and Wang X R 2025 Natl. Sci. Rev. 12 nwaf240
[48] Liu Q B, Zhu L J and Zhu L J under review
[49] Zhu L J and Buhrman R A 2021 Phys. Rev. Appl. 15 L031001
[50] Zhang T Y, Zhu L J, Yan Z H and Zhu L J 2025 arXiv:2512.07102
[51] Zhu L J, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 122 077201
[52] Zhu L J, Ralph D C and Buhrman R A 2019 Phys. Rev. B 99 180404
[53] Han G L, Lin X, Liu Q B, Gong G W and Zhu L J 2025 Adv. Funct. Mater. 36 e23908
[54] Yin X M, Han G L, Gong G W, Kang J, Xiong C M and Zhu L J 2025 Chin. Phys. Lett. 42 110703
[55] Zhu L J, Sobotkiewich K, Ma X, Li X Q, Ralph D C and Buhrman R A 2019 Adv. Funct. Mater. 29 1805822
[56] Zhu L J, Zhu L J, Ma X, Li X Q and Buhrman R A 2022 Commun. Phys. 5 151
[57] Liu Q B, Liu L, Xing G Z and Zhu L J 2024 Nat. Commun. 15 2978
[58] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S D 2017 Nat. Mater. 16 309
[59] Zhao Z Y, Jamali M, Smith A K and Wang J P 2015 Appl. Phys. Lett. 106 132404
[60] Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Kawasaki M and Tokura Y 2018 Sci. Adv. 4 eaat9989
[61] Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z S, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J and Chen J S 2019 Nat. Nanotechnol. 14 939
[62] Huang Q K, Dong Y N, Zhao X N,Wang J, Chen Y X, Bai L H, Dai Y, Dai Y Y, Yan S S and Tian Y F 2020 Adv. Electron. Mater. 6 1900782
[63] Kajale S N, Nguyen T, Hung N T, Li M and Sarkar D 2024 Sci. Adv. 10 eadk8669
[64] Zhang Y Y, Ren X L, Liu R Z, Chen Z H, Wu X Z, Pang J, Wang W, Lan G B, Watanabe K, Taniguchi T, Shi Y G, Yu G Q and Shao Q M 2024 Adv. Mater. 36 2406464
[65] Guang Y, Zhang L K, Zhang J W, et al. 2023 Adv. Electron. Mater. 9 2200570
[66] Watanabe K, Jinnai B, Fukami S, Sato H and Ohno H 2018 Nat. Commun. 9 663
[1] Highly sensitive, multi-stage, and mid-infrared refractive index sensor based on photonic spin Hall effect
Jiaye Ding(丁嘉烨), Chenglong Wang(汪承龙), Shengli Liu(刘胜利), Peng Dong(董鹏), and Jie Cheng(程杰). Chin. Phys. B, 2026, 35(1): 014201.
[2] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[3] Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets
Haodong Fan(樊浩东), Zhongshu Feng(冯重舒), Tingwei Chen(陈亭伟), Xiaofeng Han(韩晓峰), Xinyu Shu(舒新愉), Mingzhang Wei(卫鸣璋), Shiqi Liu(刘士琦), Mengxi Wang(王梦溪), Shengru Chen(陈盛如), Xuejian Tang(唐学健), Menghao Jin(金蒙豪), Yungui Ma(马云贵), Bo Liu(刘波), and Tiejun Zhou(周铁军). Chin. Phys. B, 2025, 34(9): 098501.
[4] Perpendicular magnetic anisotropy of Pd/Co2MnSi/Co/Pd multilayer
Xiaoqi Qin(秦晓奇), Jiaxing Tan(谭家兴), Xianwu Xiu(修显武), Wentian Cao(曹文田), and Shuyun Wang(王书运). Chin. Phys. B, 2025, 34(3): 037502.
[5] Current-driven magnetic domain wall motion in heterostructure films
Rui Fu(付瑞), Jiwen Chen(陈集文), Zichang Huang(黄子畅), Jingyi Guan(管璟一), Zidong Wang(王子东), and Yan Zhou(周艳). Chin. Phys. B, 2025, 34(12): 127502.
[6] Thickness dependence of linearly polarized light-induced momentum anisotropy and inverse spin Hall effect in topological insulator Bi2Te3
Jiayi Qiu(邱嘉毅), Jinling Yu(俞金玲), Zhu Diao(刁佇), Yunfeng Lai(赖云锋), Shuying Cheng(程树英), Yonghai Chen(陈涌海), and Ke He(何珂). Chin. Phys. B, 2025, 34(11): 117103.
[7] An SOT-switchable micromagnet scheme of adiabatic geometric gates for silicon spin qubits
Fang-Ge Li(李方阁), Ranran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(11): 110306.
[8] Recent progress on electron- and magnon-mediated torques
Jia-Min Lai(来嘉敏), Bingyue Bian(边冰玥), Zhonghai Yu(于忠海), Kaiwei Guo(郭凯卫), Yajing Zhang(张雅静), Pengnan Zhao(赵鹏楠), Xiaoqian Zhang(张霄倩), Chunyang Tang(汤春阳), Jiasen Cao(曹家森), Zhiyong Quan(全志勇), Fei Wang(王飞), and Xiaohong Xu(许小红). Chin. Phys. B, 2025, 34(10): 107501.
[9] Surface phonon resonance: A new mechanism for enhancing photonic spin Hall effect and refractive index sensor
Jie Cheng(程杰), Chenglong Wang(汪承龙), Yiming Li(李一铭), Yalin Zhang(张亚林), Shengli Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(8): 084201.
[10] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[11] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[12] Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures
Mingming Li(李明明), Lei Zhang(张磊), Lichuan Jin(金立川), and Haizhong Guo(郭海中). Chin. Phys. B, 2024, 33(2): 027201.
[13] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
[14] Engineered photonic spin Hall effect of Gaussian beam in antisymmetric parity-time metamaterials
Lu-Yao Liu(刘露遥), Zhen-Xiao Feng(冯振校), Dong-Mei Deng(邓冬梅), and Guang-Hui Wang(王光辉). Chin. Phys. B, 2023, 32(9): 094201.
[15] Highly anisotropic Dirac fermion and spin transportproperties in Cu-graphane
Chao Wu(吴超), Lichuan Zhang(张礼川), Lin Xia(夏霖), Dong Hao(郝东), Shiqi Li(李仕琪), Lizhi Zhang(张礼智), Yuee Xie(谢月娥), and Yuanping Chen(陈元平). Chin. Phys. B, 2023, 32(8): 087104.
No Suggested Reading articles found!