| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Heavy-ions-induced failure mechanisms and structural damage in SiC MOSFETs under complex irradiation conditions |
| Yiping Xiao(肖一平)1, Chaoming Liu(刘超铭)2,†, Jiaming Zhou(周佳明)1, Le Gao(高乐)2, Mingzheng Wang(王铭峥)1, Tianqi Wang(王天琦)3, and Mingxue Huo(霍明学)2 |
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150006, China; 2 School of Astronautics, Harbin Institute of Technology, Harbin 150006, China; 3 Space Environments Simulation Research Infrastructure, Harbin Institute of Technology, Harbin 150006, China |
|
|
|
|
Abstract The failure mechanisms and structural damage of SiC MOSFETs induced by heavy ion irradiation were demonstrated. The findings reveal three degradation modes, depending on the drain voltage. At a relatively low voltage, the damage is triggered by the formation and activation of gate latent damage (LDs), with damage concentrated in the gate oxide. The second degradation mode involves permanent leakage current degradation, with damage progressively transitioning from the oxide to the SiC material as the drain voltage escalates. Ultimately, the device undergoes catastrophic burnout above certain voltages, characterized by the lattice temperature reaching the sublimation point of SiC, resulting in surface cavity and complete structural destruction. This paper presents a comprehensive investigation of SiC MOSFETs under heavy ion exposure, providing radiation resistance methods of SiC-based devices for aerospace applications.
|
Received: 25 April 2025
Revised: 19 June 2025
Accepted manuscript online: 17 September 2025
|
|
PACS:
|
85.30.Tv
|
(Field effect devices)
|
| |
61.80.-x
|
(Physical radiation effects, radiation damage)
|
| |
51.50.+v
|
(Electrical properties)
|
| |
84.30.Jc
|
(Power electronics; power supply circuits)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1609000) and the National Natural Science Foundation of China (Grant Nos. U2341222, U2441248, 12275061, and 12075069). |
Corresponding Authors:
Chaoming Liu
E-mail: cmliu@hit.edu.cn
|
Cite this article:
Yiping Xiao(肖一平), Chaoming Liu(刘超铭), Jiaming Zhou(周佳明), Le Gao(高乐), Mingzheng Wang(王铭峥), Tianqi Wang(王天琦), and Mingxue Huo(霍明学) Heavy-ions-induced failure mechanisms and structural damage in SiC MOSFETs under complex irradiation conditions 2026 Chin. Phys. B 35 018503
|
[1] Mbaye N, Pouget V, Darracq F and Lewis D 2013 Microelectron. Reliab. 53 1315 [2] Singh R, Capell D C, Hefner A R, Lai J and Palmour J W 2002 IEEE Trans. Electron Dev. 49 0254 [3] Zhang H, Guo H X, Lei Z F, Peng C, Zhang Z G, Chen Z W, Sun C H, He Y J, Zhang F Q, Pan X Y, Zhong X L and OuYang X P 2023 Chin. Phys. B 32 028504 [4] Ohshima T, Itoh H and Yoshikawa M 2001 J. Appl. Phys. 90 3038 [5] Zeng Q, Yang Z, Wang X, Li S and Gao F 2024 IEEE Trans. Electron Dev. 71 3359172 [6] Yang Y, Guan S, Hong S, Wan B and Fu G 2024 Proc. IEEE 10th Int. Symp. Syst. Security Safety Rel. 7–13 [7] Cao R, Wang K, Meng Y, Li L, Zhao L, Han D, Liu Y, Zheng S, Li H, Jiang Z X and Xue Y 2023 Chin. Phys. B 32 068502 [8] Zhang H, Guo H, Zhang F, Lei Z, Pan X, Liu Y, Gu Z, Ju A, Zhong X and Ouyang X P 2021 Microelectronics Reliab. 124 114329 [9] Lauenstein J M, Casey M C, Ladbury R L, Kim H S, Phan A M and Topper A D 2021 IEEE Int. Reliab. Phys. Symp. 1–8 [10] Zhang H, Guo H X, Lei Z F, Peng C, Ma W Y, Wang D, Sun C H, Zhang F Q, Zhang Z G, Yang Y, Lv w, Wang Z M, Zhong X L and Ouyang X P 2023 Chin. Phys. B 32 108503 [11] Sengupta A, Ball D R, Sternberg A L, Islam S, Senarath A S, Reed R A, McCurdy M W, Zhang E X, Hutson J M and Alles M L 2024 IEEE Trans. Nucl. Sci. 71 3357129 [12] Martinella C, Natzke P, Alía R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A and Grossner U 2024 Microelectron. Reliab. 128 114423 [13] Pintacuda F, Massett S, Vitanza E, Muschitiello M and Cantarella V 2019 Eur. Space Power Conf. 1–5 [14] Abbate C, Busatto G, Tedesco D, Sanseverino A, Velardi F and Wyss J 2019 IEEE Trans. Electron Dev. 66 2931078 [15] Peng C, Lei Z F, Zhang Z, Chen Y, He Y and Yao B 2022 IEEE Trans. Nucl. Sci. 69 3166521 [16] Qiu L S, Bai Y, Dong Z, Ding J Q, Hao J L, Tang Y D, Tian X, Li C Z and Liu X Y 2024 IEEE Trans. Nucl. Sci. 71 3481367 [17] Qiu L S, Bai Y, Ding J Q, Hao J L, Tang Y D, Yang C Y, Tian X L, Li C Z and Liu X Y 2024 IEEE Trans. Electron Dev. 71 3364111 [18] Xiao Y P, Liu C M, Zhou J M, Wang M Z, Qi C H and Wang T Q 2025 IEEE Trans. Dev. Mater. Reliab. 25 3544208 [19] Martinella C, Stark R, Ziemann T, Alía R G, Kadi Y, Grossner U and Javanainen A 2019 IEEE Trans. Nucl. Sci. 66 2907669 [20] Qiu L S, Bai Y, Ding J Q, Hao J L, Tang Y D, Yang C Y, Tian X L, Li C Z and Liu X Y 2025 IEEE Trans. Electron Dev. 72 3554159 [21] Liu K Y, Tang X, Yuan H, Song Q, Liu Y, Zhou Y, Du F and Zhang Y 2023 IEEE Trans. Electron Dev. 70 3270132 [22] Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G, Kadi Y, Grossner U and Javanainen A 2020 IEEE Trans. Nucl. Sci. 67 3002729 [23] Germanicus R C, Niskanen K, Michez A, Moultif N, Jouha W, Latry O, Boch J, Lüders U and Touboul D 2022 Mater. Sci. Forum 1062 544 [24] Shoji T, Nishida S, Hamada K and Tadano H 2014 Jpn. J. Appl. Phys. 53 04EP03 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|