|
|
|
An SOT-switchable micromagnet scheme of adiabatic geometric gates for silicon spin qubits |
| Fang-Ge Li(李方阁)1,2, Ranran Cai(蔡冉冉)1,2,†, Bao-Chuan Wang(王保传)1,2, Hai-Ou Li(李海欧)1,2,3, Gang Cao(曹刚)1,2,3,‡, and Guo-Ping Guo(郭国平)1,2,3,4 |
1 Chinese Academy of Sciences (CAS) Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China; 4 Origin Quantum Computing Company Limited, Hefei 230088, China |
|
|
|
|
Abstract Geometric phase gates have attracted considerable attention due to their intrinsic robustness against certain types of noise. Significant progress has been achieved in implementing geometric phase gates using microwave control in silicon-based electron spin systems. In this work, we propose an alternative geometric phase gate protocol that differs fundamentally from microwave driving approaches by leveraging square-wave control of rapidly switchable micromagnets driven by spin-orbit torque (SOT) to achieve fast and precise magnetic field modulation. By employing square-wave currents to control magnetization switching, our approach relaxes the requirements on waveform precision while significantly suppressing crosstalk. Moreover, our scheme inherently preserves trajectory closure at the end of each operation, effectively mitigating noise-induced path deviation and enhancing gate robustness even under strong noise conditions, thereby offering a promising pathway toward efficient and reliable quantum operations in large-scale qubit arrays.
|
Received: 09 April 2025
Revised: 23 May 2025
Accepted manuscript online: 26 May 2025
|
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
| |
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
| |
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
| |
73.61.Cw
|
(Elemental semiconductors)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304560, 92265113, 12074368, and 12034018), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302300), and China Postdoctoral Science Foundation (Grant Nos. BX20220281 and 2023M733408). |
Corresponding Authors:
Ranran Cai, Gang Cao
E-mail: cairanran@ustc.edu.cn;gcao@ustc.edu.cn
|
Cite this article:
Fang-Ge Li(李方阁), Ranran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) An SOT-switchable micromagnet scheme of adiabatic geometric gates for silicon spin qubits 2025 Chin. Phys. B 34 110306
|
[1] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 [2] Veldhorst M, Hwang J, Yang C, Leenstra A, de Ronde B, Dehollain J, Muhonen J, Hudson F, Itoh K M and Morello A T 2014 Nat. Nanotechnol. 9 981 [3] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S and Hoshi Y 2018 Nat. Nanotechnol. 13 102 [4] Vinet M 2021 Nat. Nanotechnol. 16 1296 [5] Yang C, Chan K, Harper R, Huang W, Evans T, Hwang J, Hensen B, Laucht A, Tanttu T and Hudson F 2019 Nat. Electron. 2 151 [6] O’Brien J L, Pryde G J, Gilchrist A, James D F, Langford N K, Ralph T C and White A G 2004 Phys. Rev. Lett. 93 080502 [7] He Y, Gorman S, Keith D, Kranz L, Keizer J and Simmons M 2019 Nature 571 371 [8] Petit L, Eenink H, Russ M, Lawrie W, Hendrickx N, Philips S, Clarke J, Vandersypen L and Veldhorst M 2020 Nature 580 355 [9] Madzik M T, Asaad S, Youssry A, Joecker B, Rudinger K M, Nielsen E, Young K C, Proctor T J, Baczewski A D and Laucht A 2022 Nature 601 348 [10] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E and Petta J R 2022 Sci. Adv. 8 eabn5130 [11] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G and Tarucha S 2022 Nature 601 338 [12] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M 2022 Nature 601 343 [13] Dijkema J, Xue X, Harvey-Collard P, Rimbach-Russ M, de Snoo S L, Zheng G, Sammak A, Scappucci G and Vandersypen L M K 2025 Nat. Phys. 21 168 [14] McMillan S R and Burkard G 2023 Phys. Rev. B 108 125414) [15] Tanttu T, Lim W H, Huang J Y, Stuyck N D, Gilbert W, Su R Y, Feng M, Cifuentes J D, Seedhouse A E, Seritan S K., Ostrove C I, Rudinger K M, Leon R C C, Huang W, Escott C C, Itoh K M, Abrosimov N V, Pohl H J, Thewalt M L W, Hudson F E, Blume-Kohout R, Bartlett S D, Morello A, Laucht A, Yang C H, Saraiva A and Dzurak A S 2024 Nat. Phys. 20 1804 [16] Hahn E L 1950 Phys. Rev. 80 580 [17] Wang X, Bishop L S, Kestner J, Barnes E, Sun K and Das Sarma S 2012 Nat. Commun. 3 997 [18] Emerson J 2019 Nat. Electron. 2 140 [19] Daraeizadeh S, Premaratne S P and Matsuura A Y 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) pp. 30–36 [20] Lapointe-Major M, Germain O, Camirand Lemyre J, LachanceQuirion D, Rochette S, Camirand Lemyre F and Pioro-Ladriere M 2020 Phys. Rev. B 102 085301 [21] Nakajima T, Kojima Y, Uehara Y, Noiri A, Takeda K, Kobayashi T and Tarucha S 2021 Phys. Rev. Appl. 15 L031003 [22] Johansson M, Sjoqvist E, Andersson L M, Ericsson M, Hessmo B, Singh K and Tong D 2012 Phys. Rev. A 86 062322 [23] Sjoqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M and Singh K 2012 New J. Phys. 14 103035 [24] Solinas P, Zanardi P, Zanghí N and Rossi F 2003 Phys. Rev. B 67 121307 [25] Zhang J, Kyaw T H, Filipp S, Kwek L C, Sjoqvist E and Tong D 2023 Phys. Rep. 1027 1 [26] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94 [27] Zhang C, Chen T, Li S, Wang X and Xue Z Y 2020 Phys. Rev. A 101 052302 [28] Ma R L, Li A R, Wang C, Kong Z Z, Liao W Z, Ni M, Zhu S K, Chu N, Zhang C and Liu D 2024 Phys. Rev. Appl. 21 014044 [29] Pachos J, Zanardi P and Rasetti M 1999 Phys. Rev. A 61 010305 [30] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355 [31] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695 [32] Solinas P, Zanardi P, Zanghì N and Rossi F 2003 Phys. Rev. A 67 062315 [33] Toyoda K, Uchida K, Noguchi A, Haze S and Urabe S 2013 Phys. Rev. A 87 052307 [34] Wu H, Gauger E M, George R E, Mott onen M, Riemann H, Abrosimov N V, Becker P, Pohl H J, Itoh K M and Thewalt M L 2013 Phys. Rev. A 87 032326 [35] Berger S, Pechal M, Abdumalikov Jr A A, Eichler C, Steffen L, Fedorov A, Wallraff A and Filipp S 2013 Phys. Rev. A 87 060303 [36] Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian W Q, Liu Y Q, Wang H Y and Zhang H Y 2019 Phys. Rev. Lett. 122 010503 [37] Cai R, Li F G, Wang B C, Li H O, Cao G and Guo G P 2025 Phys. Rev. Appl. 23 024048 [38] Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F and Mokrousov Y 2021 IEEE Trans. Magn. 57 1 [39] Holstein B R 1989 Am. J. Phys 57 1079 [40] Fukami S, Anekawa T, Zhang C and Ohno H 2016 Nat. Nanotechnol. 11 621 [41] Kong W, Wan C, Tao B, Fang C, Huang L, Guo C, Irfan M and Han X 2018 Appl. Phys. Lett. 113 162402 [42] Mazzolo A 2017 Journal of Mathematical Physics 58 093302 [43] Yang C H, Leon R, Hwang J, Saraiva A, Tanttu T, Huang W, Camirand Lemyre J, Chan K W, Tan K and Hudson F E 2020 Nature 580 350 [44] Camenzind L C, Geyer S, Fuhrer A, Warburton R J, Zumbuhl D M and Kuhlmann A V 2022 Nat. Electron. 5 178 [45] Yang J C, Li Z H, Wang B C, Li H O, Cao G and Guo G P 2023 Appl. Phys. Lett. 122 054001 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|