Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 127502    DOI: 10.1088/1674-1056/ade4ad
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Current-driven magnetic domain wall motion in heterostructure films

Rui Fu(付瑞), Jiwen Chen(陈集文), Zichang Huang(黄子畅), Jingyi Guan(管璟一), Zidong Wang(王子东), and Yan Zhou(周艳)
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
Abstract  With the rise of big data, the increasing volume of information has raised significant demands on data storage technologies, presenting various challenges to current information storage solutions. Consequently, finding more efficient and higher-capacity methods for data storage has become crucial. In comparison to conventional semiconductor random access memory, magnetic random access memory (MRAM), which has been progressively developed in recent years, shows promise as a candidate for the next generation of information storage due to its notable advantages, including non-volatility, high density, stability, low power consumption, and resistance to radiation. Among the MRAM variants, spin-orbit torque magnetic random access memory (SOT-MRAM) exhibits considerable potential for advancement. Utilizing a vertical magnetized thin film structure made up of heavy metal and ferromagnetic metal, SOT-MRAM leverages the strong spin-orbit coupling effect of the heavy metal to convert the flow of charge into pure spin flow. This process also allows for the injection of spin accumulation from the interface into the adjacent magnetic layer through mechanisms such as the spin Hall effect and the Rashba effect, ultimately applying spin-orbit torque to manipulate the magnetic moment of the magnetic layer, facilitating its reversal. This paper primarily investigates the physical mechanisms underlying the motion of magnetic domain walls driven by current-induced spin-orbit moments in vertically magnetized heterostructures. Utilizing a magneto-optical Kerr microscope to observe the movement of the magnetic domain walls, the study analyzes and compares the velocity behaviors of the domain walls across different cobalt thicknesses. These investigations offer valuable design insights for applications involving track memory driven by spin-orbit moments.
Keywords:  magnetic domain wall      spin-orbit torque      magneto-optical Kerr microscope      track memory  
Received:  26 February 2025      Revised:  13 June 2025      Accepted manuscript online:  16 June 2025
PACS:  75.78.-n (Magnetization dynamics)  
Fund: Project supported by the Shenzhen Fundamental Research Fund (Grant No. JCYJ20210324120213037), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2021B1515120047), the Fund from the Shenzhen Peacock Group Plan (Grant No. KQTD20180413181702403), the National Natural Science Foundation of China (Grant Nos. 12374123 and 12204396), and the 2023 SZSTI stable support scheme.
Corresponding Authors:  Yan Zhou     E-mail:  zhouyan@cuhk.edu.cn

Cite this article: 

Rui Fu(付瑞), Jiwen Chen(陈集文), Zichang Huang(黄子畅), Jingyi Guan(管璟一), Zidong Wang(王子东), and Yan Zhou(周艳) Current-driven magnetic domain wall motion in heterostructure films 2025 Chin. Phys. B 34 127502

[1] Coey J M 2010 Magnetism (Cambridge University Press) p. 620
[2] Garello K, Yasin F, Hody H, Couet S, Souriau L, Sharifi S H, Swerts J, Carpenter R, Rao S, Kim W, Wu J, Sethu K K V, Pak M, Jossart N, Crotti D, Furnémont A and Kar G S 2019 Symposium on VLSI Circuits, June 09–14, 2019, Kyoto, Japan p. T194
[3] Grimaldi E, Krizakova V, Sala G, Yasin F, Couet S, Sankar Kar G, Garello K and Gambardella P 2020 Nat. Nanotech. 15 111
[4] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[5] Hoffmann A 2013 IEEE Transactions on Magnetics 49 5172
[6] Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S, Chang L T, Jiang Y, Lang M, Tang J S, Wang Y, Tserkovnyak Y, Khalili Amiri P and Wang K L 2014 Nat. Nanotech. 9 548
[7] Murray N, Liao W B, Wang T C, Chang L J, Tsai L Z, Tsai T Y, Lee S F and Pai C F 2019 Phys. Rev. B 100 104441
[8] Liu Y, Zhou B and Zhu J G 2019 Sci. Rep. 9 325
[9] Lau Y C, Betto D, Rode K, Coey J M and Stamenov P 2016 Nat. Nanotech. 11 758
[10] Wu H, Razavi S A, Shao Q M, Li X, Wong K L, Liu Y X and Wang K L 2019 Phys. Rev. B 99 184403
[11] Hansen P, Clausen C, Much G, Rosenkranz M and Witter K 1989 J. Appl. Phys. 66 756
[12] Campbell I A 1972 J. Phys. F: Metal Phys. 2 L47
[13] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[14] Jin S, Li J, Li Q X and Zhu J J 2024 Chin. Phys. B 33 077503
[15] Usaj G, Lustemberg P and Balseiro C A 2005 Phys. Rev. Lett. 94 036803
[16] Dugaev V K, Litvinov V I and Barnas J 2006 Phys. Rev. B 74 224438
[17] Brey L, Fertig H A and Das Sarma S 2007 Phys. Rev. Lett. 99 116802
[18] Liu Q, Liu C X, Xu C, Qi X L and Zhang S C 2009 Phys. Rev. Lett. 102 156603
[19] Zhu J J, Yao D X, Zhang S C and Chang K 2011 Phys. Rev. Lett. 106 097201
[20] Chang H R, Zhou J, Wang S X, Shan W Y and Xiao D 2015 Phys. Rev. B 92 241103
[21] Hosseini M V and Askari M 2015 Phys. Rev. B 92 224435
[22] Moore T A, Miron I M, Gaudin G, Serret G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Bonfim M 2008 Appl. Phys. Lett. 93 262504
[23] Miron I M, Zermatten P J, Gaudin G, Auffret S, Rodmacq B and Schuhl A 2009 Phys. Rev. Lett. 102 137202
[24] Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A and Gaudin G 2011 Nat. Mater. 10 419
[25] Emori S, Bono D C and Beach G S 2012 Appl. Phys. Lett. 101 042405
[1] Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets
Haodong Fan(樊浩东), Zhongshu Feng(冯重舒), Tingwei Chen(陈亭伟), Xiaofeng Han(韩晓峰), Xinyu Shu(舒新愉), Mingzhang Wei(卫鸣璋), Shiqi Liu(刘士琦), Mengxi Wang(王梦溪), Shengru Chen(陈盛如), Xuejian Tang(唐学健), Menghao Jin(金蒙豪), Yungui Ma(马云贵), Bo Liu(刘波), and Tiejun Zhou(周铁军). Chin. Phys. B, 2025, 34(9): 098501.
[2] An SOT-switchable micromagnet scheme of adiabatic geometric gates for silicon spin qubits
Fang-Ge Li(李方阁), Ranran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(11): 110306.
[3] Directly tunable magnon frequency comb effect based on domain wall
Xiaoxue Yang(杨霄雪), Huiting Li(李慧婷), Xue-Feng Zhang(张雪枫), Xiao-Ping Ma(马晓萍), Je-Ho Shim(沈帝虎), Yingjiu Jin(金迎九), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2025, 34(10): 107507.
[4] Recent progress on electron- and magnon-mediated torques
Jia-Min Lai(来嘉敏), Bingyue Bian(边冰玥), Zhonghai Yu(于忠海), Kaiwei Guo(郭凯卫), Yajing Zhang(张雅静), Pengnan Zhao(赵鹏楠), Xiaoqian Zhang(张霄倩), Chunyang Tang(汤春阳), Jiasen Cao(曹家森), Zhiyong Quan(全志勇), Fei Wang(王飞), and Xiaohong Xu(许小红). Chin. Phys. B, 2025, 34(10): 107501.
[5] Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel
Jie-Yao Chen(陈杰尧), Jia Luo(罗佳), Geng-Xin Hu(胡更新), Jun-Lin Wang(王君林), Guan-Qi Li(李冠祺), Zhen-Dong Chen(陈振东), Xian-Yang Lu(陆显扬), Guo-Ping Zhao(赵国平), Yuan Liu(刘远), Jing Wu(吴竞), and Yong-Bing Xu(徐永兵). Chin. Phys. B, 2024, 33(7): 077505.
[6] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[7] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
[8] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[9] Multi-segmented nanowires for vortex magnetic domain wall racetrack memory
M Al Bahri, M Al Hinaai, and T Al Harthy. Chin. Phys. B, 2023, 32(12): 127508.
[10] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[11] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[12] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[13] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[14] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[15] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
No Suggested Reading articles found!