Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 016301    DOI: 10.1088/1674-1056/ae0a39
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Machine learning-assisted optimization of MTO basis sets

Zhiqiang Li(李志强) and Lei Wang(王蕾)†
Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
Abstract  First-principles calculations based on density functional theory (DFT) have had a significant impact on chemistry, physics, and materials science, enabling in-depth exploration of the structural and electronic properties of a wide variety of materials. Among different implementations of DFT, the plane-wave method is widely used for periodic systems because of its high accuracy. However, this method typically requires a large number of basis functions for large systems, leading to high computational costs. Localized basis sets, such as the muffin-tin orbital (MTO) method, have been introduced to provide a more efficient description of electronic structure with a reduced basis set, albeit at the cost of reduced computational accuracy. In this work, we propose an optimization strategy using machine-learning techniques to automate MTO basis-set parameters, thereby improving the accuracy and efficiency of MTO-based calculations. Default MTO parameter settings primarily focus on lattice structure and give less consideration to element-specific differences. In contrast, our optimized parameters incorporate both structural and elemental information. Based on these converged parameters, we successfully recovered missing bands for CrTe$_2$. For the other three materials - Si, GaAs, and CrI$_3$ - we achieved band improvements of up to 2 eV. Furthermore, the generalization of the machine-learned method is validated by perturbation, strain, and elemental substitution, resulting in improved band structures. Additionally, lattice-constant optimization for GaAs using the converged parameters yields closer agreement with experiment.
Keywords:  first-principles calculations      muffin-tin orbital      machine learning  
Received:  07 May 2025      Revised:  19 August 2025      Accepted manuscript online:  23 September 2025
PACS:  63.20.dk (First-principles theory)  
  89.20.Ff (Computer science and technology)  
Fund: This project was supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406600 and 2021YFA1202200).
Corresponding Authors:  Lei Wang     E-mail:  wanglei.icer@seu.edu.cn

Cite this article: 

Zhiqiang Li(李志强) and Lei Wang(王蕾) Machine learning-assisted optimization of MTO basis sets 2026 Chin. Phys. B 35 016301

[1] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[2] Burke K and Wagne L O 2013 Int. J. Quantum Chem. 113 96
[3] Perdew J P, Ruzsinszky A, Tao J, Staroverov V N, Scuseria G E and Csonka G I 2005 J. Chem. Phys. 123 062201
[4] Chachiyo T 2016 J. Chem. Phys. 145 021101
[5] Jitropas U and Hsu C H 2017 Jpn. J. Appl. Phys. 56 070313
[6] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[7] Becke A D 1988 Phys. Rev. A 38 3098
[8] Langreth D C and Mehl M J 1983 Phys. Rev. B 28 1809
[9] Topp W C and Hopfield J J 1973 Phys. Rev. B 7 1295
[10] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[11] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[12] Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H and Marks L D 2020 J. Chem. Phys. 152 074101
[13] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[14] Artacho E, Anglada E, Diéguez O, Gale J D, García A, Junquera J, Martin R M, Ordejón P, Pruneda J M, Sánchez-Portal D and Soler J M 2008 J. Phys.: Condens. Matter 20 064208
[15] García A, Papior N, Akhtar A, et al. 2020 J. Chem. Phys. 152 204108
[16] Ozaki T 2003 Phys. Rev. B 67 155108
[17] Ozaki T and Kino H 2004 Phys. Rev. B 69 195113
[18] Ozaki T and Kino H 2005 Phys. Rev. B 72 045121
[19] Chen M H, Guo G C and He L X, 2010 J. Phys. Condens. Matter 22 44550
[20] Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, Yang C and He L X 2016 Comput. Mater. Sci. 112 503
[21] Kühne T D, Annuzzi M, Ben M D, et al. 2020 J. Chem. Phys. 152 194103
[22] Andersen O K 2012 2012 Correlated Electrons: From Models to Materials 2nd edn. (Germany: Forschungszentrum Jülich) pp. 55-84
[23] Zurek E, Jepsen O and Andersen O K 2005 arXiv:cond-mat/0504374 [cond-mat.str-el]
[24] Andersen O K 1975 Phys. Rev. B 12 3060
[25] Andersen O K, Jepsen O and Krier G 1994 Lectures on Methods of Electronic Structure Calculations (Singapore: World Scientific Publishing Co) pp. 63-124
[26] Ando T 1991 Phys. Rev. B 44 8017
[27] Xia K, Zwierzycki M, Talanana M, Kelly P J and Bauer G E W 2006 Phys. Rev. B 73 064420
[28] Wesselink R J H, Gupta K, Yuan Z and Kelly P J 2019 Phys. Rev. B 99 144409
[29] Starikov A A, Liu Y, Yuan Z and Kelly P J 2018 Phys. Rev. B 97 214415
[30] Wang L, Min T and Xia K 2021 Phys. Rev. B 103 054204
[31] Nomura M and Shibata M 2024 arXiv:2402.01373 [cs.NE]
[32] Akiba T, Sano S, Yanase T, Ohta T and Koyama M 2019 in Proceedings of the 25th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining KDD’19, ACM, New York, NY, USA, pp. 2623-2631
[33] Blöchl P E 1994 Phys. Rev. B 50 17953
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Liu Y, Kwon S, de Coster G J, Lake R K and Neupane M R 2022 Phys. Rev. Mater. 6 084004
[37] Mcguire M A, Dixit H, Cooper V R and Sales B C 2014 Chem. Mater. 27 612
[38] von Barth U and Hedin L 1972 J. Phys. C: Solid State Phys. 5 1629
[39] Katsura T and Tange Y 2019 Minerals 9 745
[40] Dufek P, Schwarz K and Blaha P 1993 Phys. Rev. B 48 12672
[41] Drittler B, Weinert M, Zeller R and Dederichs P H 1990 Phys. Rev. B 42 9336
[42] Zhang Y C 2017 J. Chem. Phys. 146 194705
[1] Machine learning of chaotic characteristics in classical nonlinear dynamics using variational quantum circuit
Sheng-Chen Bai(白生辰) and Shi-Ju Ran(冉仕举). Chin. Phys. B, 2026, 35(2): 020303.
[2] First-principles insights into NaMgPO3S oxysulfide solid electrolyte
Jian Sun(孙健), Shaohui Ding(丁少辉), Daquan Yang(杨大全), Kan Zhang(张侃), and Huican Mao(毛慧灿). Chin. Phys. B, 2026, 35(2): 027105.
[3] Three-dimensional flat bands and possible interlayer triplet pairing superconductivity in the alternating twisted NbSe2 moiré bulk
Shuang Liu(刘爽), Peng Chen(陈鹏), and Shihao Zhang(张世豪). Chin. Phys. B, 2026, 35(2): 026801.
[4] Two-dimensional kagome semiconductor Sc6S5X6 (X = Cl, Br, I) with trilayer kagome lattice
Jin-Ling Yan(闫金铃), Xing-Yu Wang(王星雨), Gen-Ping Wu(吴根平), Hao Wang(王浩), Ya-Jiao Ke(柯亚娇), Jiafu Wang(王嘉赋), Zhi-Hong Liu(刘志宏), and Jun-Hui Yuan(袁俊辉). Chin. Phys. B, 2026, 35(2): 027102.
[5] EDIS: A simulation software for dynamic ion intercalation/deintercalation processes in electrode materials
Liqi Wang(王力奇), Ruijuan Xiao(肖睿娟), and Hong Li(李泓). Chin. Phys. B, 2026, 35(1): 018201.
[6] Revealing the dynamic responses of Pb under shock loading based on DFT-accuracy machine learning potential
Enze Hou(侯恩则), Xiaoyang Wang(王啸洋), and Han Wang(王涵). Chin. Phys. B, 2026, 35(1): 018701.
[7] First-principles insights into strain-mediated He migration and irradiation resistance in W-Ta-Cr-V complex alloys
Mengdie Wang(王梦蝶), Chao Zhang(张超), Xinyue Lan(兰新月), Biao Hu(胡标), and Xuebang Wu(吴学邦). Chin. Phys. B, 2026, 35(1): 016102.
[8] Review of machine learning tight-binding models: Route to accurate and scalable electronic simulations
Jijie Zou(邹暨捷), Zhanghao Zhouyin(周寅张皓), Shishir Kumar Pandey, and Qiangqiang Gu(顾强强). Chin. Phys. B, 2026, 35(1): 017101.
[9] Machine learning approach to reconstruct dephasing time from solid HHG spectra
Jiahao Liu(刘佳豪), Xi Zhao(赵曦), Jun Wang(王俊), and Songbin Zhang(张松斌). Chin. Phys. B, 2025, 34(9): 097804.
[10] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[11] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[12] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[13] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[14] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[15] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
No Suggested Reading articles found!